DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controlled Expansion of a Strong‐Field Iron Nitride Cluster: Multi‐Site Ligand Substitution as a Strategy for Activating Interstitial Nitride Nucleophilicity

Abstract

Abstract Multimetallic clusters have long been investigated as molecular surrogates for reactive sites on metal surfaces. In the case of the μ 4 ‐nitrido cluster [Fe 44 ‐N)(CO) 12 ] , this analogy is limited owing to the electron‐withdrawing effect of carbonyl ligands on the iron nitride core. Described here is the synthesis and reactivity of [Fe 44 ‐N)(CO) 8 (CNAr Mes2 ) 4 ] , an electron‐rich analogue of [Fe 44 ‐N)(CO) 12 ] , where the interstitial nitride displays significant nucleophilicity. This characteristic enables rational expansion with main‐group and transition‐metal centers to yield unsaturated sites. The resulting clusters display surface‐like reactivity through coordination‐sphere‐dependent atom rearrangement and metal–metal cooperativity.

Authors:
 [1];  [1];  [2];  [1];  [1];  [1]; ORCiD logo [1]
  1. Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive MC 0358 La Jolla CA 92093 USA
  2. UCSD-CNRS Joint Research Laboratory (UMI 3555) Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive, Mail Code 0358 La Jolla California 92093 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1438949
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Angewandte Chemie
Additional Journal Information:
Journal Name: Angewandte Chemie Journal Volume: 130 Journal Issue: 40; Journal ID: ISSN 0044-8249
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Drance, Myles J., Mokhtarzadeh, Charles C., Melaimi, Mohand, Agnew, Douglas W., Moore, Curtis E., Rheingold, Arnold L., and Figueroa, Joshua S. Controlled Expansion of a Strong‐Field Iron Nitride Cluster: Multi‐Site Ligand Substitution as a Strategy for Activating Interstitial Nitride Nucleophilicity. Germany: N. p., 2018. Web. doi:10.1002/ange.201801206.
Drance, Myles J., Mokhtarzadeh, Charles C., Melaimi, Mohand, Agnew, Douglas W., Moore, Curtis E., Rheingold, Arnold L., & Figueroa, Joshua S. Controlled Expansion of a Strong‐Field Iron Nitride Cluster: Multi‐Site Ligand Substitution as a Strategy for Activating Interstitial Nitride Nucleophilicity. Germany. https://doi.org/10.1002/ange.201801206
Drance, Myles J., Mokhtarzadeh, Charles C., Melaimi, Mohand, Agnew, Douglas W., Moore, Curtis E., Rheingold, Arnold L., and Figueroa, Joshua S. Thu . "Controlled Expansion of a Strong‐Field Iron Nitride Cluster: Multi‐Site Ligand Substitution as a Strategy for Activating Interstitial Nitride Nucleophilicity". Germany. https://doi.org/10.1002/ange.201801206.
@article{osti_1438949,
title = {Controlled Expansion of a Strong‐Field Iron Nitride Cluster: Multi‐Site Ligand Substitution as a Strategy for Activating Interstitial Nitride Nucleophilicity},
author = {Drance, Myles J. and Mokhtarzadeh, Charles C. and Melaimi, Mohand and Agnew, Douglas W. and Moore, Curtis E. and Rheingold, Arnold L. and Figueroa, Joshua S.},
abstractNote = {Abstract Multimetallic clusters have long been investigated as molecular surrogates for reactive sites on metal surfaces. In the case of the μ 4 ‐nitrido cluster [Fe 4 (μ 4 ‐N)(CO) 12 ] − , this analogy is limited owing to the electron‐withdrawing effect of carbonyl ligands on the iron nitride core. Described here is the synthesis and reactivity of [Fe 4 (μ 4 ‐N)(CO) 8 (CNAr Mes2 ) 4 ] − , an electron‐rich analogue of [Fe 4 (μ 4 ‐N)(CO) 12 ] − , where the interstitial nitride displays significant nucleophilicity. This characteristic enables rational expansion with main‐group and transition‐metal centers to yield unsaturated sites. The resulting clusters display surface‐like reactivity through coordination‐sphere‐dependent atom rearrangement and metal–metal cooperativity.},
doi = {10.1002/ange.201801206},
journal = {Angewandte Chemie},
number = 40,
volume = 130,
place = {Germany},
year = {Thu May 24 00:00:00 EDT 2018},
month = {Thu May 24 00:00:00 EDT 2018}
}

Works referenced in this record:

Electrocatalytic Hydrogen Evolution from Water by a Series of Iron Carbonyl Clusters
journal, October 2013

  • Nguyen, An D.; Rail, M. Diego; Shanmugam, Maheswaran
  • Inorganic Chemistry, Vol. 52, Issue 21
  • DOI: 10.1021/ic4023882

Directing the Reactivity of [HFe 4 N(CO) 12 ] toward H + or CO 2 Reduction by Understanding the Electrocatalytic Mechanism
journal, November 2011

  • Rail, M. Diego; Berben, Louise A.
  • Journal of the American Chemical Society, Vol. 133, Issue 46
  • DOI: 10.1021/ja208312t

Comparative Measure of the Electronic Influence of Highly Substituted Aryl Isocyanides
journal, February 2015

  • Carpenter, Alex E.; Mokhtarzadeh, Charles C.; Ripatti, Donald S.
  • Inorganic Chemistry, Vol. 54, Issue 6
  • DOI: 10.1021/ic5030845

Reactions at Surfaces: From Atoms to Complexity (Nobel Lecture)
journal, April 2008


Zero-valent isocyanides of nickel, palladium and platinum as transition metal σ-type Lewis bases
journal, January 2016

  • Barnett, Brandon R.; Figueroa, Joshua S.
  • Chemical Communications, Vol. 52, Issue 96
  • DOI: 10.1039/C6CC07863J

The Preparation, Properties and Structure of the Iron Carbonyl Carbide Fe 5 (CO) 15 C
journal, December 1962

  • Braye, Emile H.; Dahl, Lawrence F.; Hubel, Walter.
  • Journal of the American Chemical Society, Vol. 84, Issue 24
  • DOI: 10.1021/ja00883a004

Structure and chemistry of a metal cluster with a four-coordinate carbide carbon atom
journal, February 1981

  • Davis, J. H.; Beno, M. A.; Williams, J. M.
  • Proceedings of the National Academy of Sciences, Vol. 78, Issue 2
  • DOI: 10.1073/pnas.78.2.668

The redox behaviour of the cluster anion [Fe4N(CO)12]−. Electron transfer chain catalytic substitution reactions. Crystal structure of [Fe4N(CO)11PPh3)]−
journal, November 1994


An Iron Electrocatalyst for Selective Reduction of CO 2 to Formate in Water: Including Thermochemical Insights
journal, November 2015


A Synthetic Model of the Mn3Ca Subsite of the Oxygen-Evolving Complex in Photosystem II
journal, August 2011


Redox-inactive metals modulate the reduction potential in heterometallic manganese–oxido clusters
journal, March 2013

  • Tsui, Emily Y.; Tran, Rosalie; Yano, Junko
  • Nature Chemistry, Vol. 5, Issue 4
  • DOI: 10.1038/nchem.1578

Metal clusters with exposed and low-coordinate nitride nitrogen atoms
journal, October 1980

  • Tachikawa, M.; Stein, Judith; Muetterties, E. L.
  • Journal of the American Chemical Society, Vol. 102, Issue 21
  • DOI: 10.1021/ja00541a084

Complex N-Heterocycle Synthesis via Iron-Catalyzed, Direct C-H Bond Amination
journal, May 2013


A Well-Defined Isocyano Analogue of HCo(CO) 4 . 2: Relative Brønsted Acidity as a Function of Isocyanide Ligation
journal, July 2016


Interaction of nitrogen with iron surfaces I. Fe(100) and Fe(111)
journal, July 1977


Predicting Catalysis:  Understanding Ammonia Synthesis from First-Principles Calculations
journal, September 2006

  • Hellman, A.; Baerends, E. J.; Biczysko, M.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 36
  • DOI: 10.1021/jp056982h

Reaktionen an Oberflächen: vom Atomaren zum Komplexen (Nobel-Vortrag)
journal, April 2008


Synthesis and Protonation of an Encumbered Iron Tetraisocyanide Dianion
journal, May 2015


Clusters and surfaces
journal, April 1979

  • Muetterties, E. L.; Rhodin, T. N.; Band, Elliot.
  • Chemical Reviews, Vol. 79, Issue 2
  • DOI: 10.1021/cr60318a001

The structure of atomic nitrogen adsorbed on Fe(100)
journal, December 1982


Isocyano Analogues of [Co(CO) 4 ] n : A Tetraisocyanide of Cobalt Isolated in Three States of Charge
journal, April 2010

  • Margulieux, Grant W.; Weidemann, Nils; Lacy, David C.
  • Journal of the American Chemical Society, Vol. 132, Issue 14
  • DOI: 10.1021/ja1012382

Molecular Metal Clusters
journal, May 1977


Fischer-Tropsch chemistry: structure of a seminal .eta.2-CH cluster derivative, HFe4(.eta.2-CH)(CO)12
journal, June 1980

  • Beno, Mark A.; Williams, Jack M.; Tachikawa, M.
  • Journal of the American Chemical Society, Vol. 102, Issue 13
  • DOI: 10.1021/ja00533a052

Catalytic C−H Bond Amination from High-Spin Iron Imido Complexes
journal, April 2011

  • King, Evan R.; Hennessy, Elisabeth T.; Betley, Theodore A.
  • Journal of the American Chemical Society, Vol. 133, Issue 13
  • DOI: 10.1021/ja110066j

Metal clusters. 25. A uniquely bonded C-H group and reactivity of a low-coordinate carbidic carbon atom
journal, June 1980

  • Tachikawa, M.; Muetterties, E. L.
  • Journal of the American Chemical Society, Vol. 102, Issue 13
  • DOI: 10.1021/ja00533a051

Testing the Polynuclear Hypothesis: Multielectron Reduction of Small Molecules by Triiron Reaction Sites
journal, August 2013

  • Powers, Tamara M.; Betley, Theodore A.
  • Journal of the American Chemical Society, Vol. 135, Issue 33
  • DOI: 10.1021/ja405057n

Catalysis by low oxidation state transition metal (carbonyl) clusters
journal, December 2004


The flexible surface. Correlation between reactivity and restructuring ability
journal, December 1991