DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks

Abstract

The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiators followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 103–104 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link densitymore » was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (nA). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less

Authors:
 [1];  [2];  [1];  [2];  [1]; ORCiD logo [3];  [4]; ORCiD logo [2]; ORCiD logo [1]
  1. Univ. of North Carolina, Chapel Hill, NC (United States)
  2. Carnegie Mellon Univ., Pittsburgh, PA (United States)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
  4. Brookhaven National Lab. (BNL), Upton, NY (United States); Columbia Univ., New York, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1438302
Report Number(s):
BNL-205657-2018-JAAM
Journal ID: ISSN 0024-9297
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Macromolecules
Additional Journal Information:
Journal Volume: 50; Journal Issue: 5; Journal ID: ISSN 0024-9297
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Bottlebrush polymer; polymer crystallization; physical networks; triblock copolymers

Citation Formats

Daniel, William F. M., Xie, Guojun, Vatankhah Varnoosfaderani, Mohammad, Burdynska, Joanna, Li, Qiaoxi, Nykypanchuk, Dmytro, Gang, Oleg, Matyjaszewski, Krzysztof, and Sheiko, Sergei S. Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks. United States: N. p., 2017. Web. doi:10.1021/acs.macromol.7b00030.
Daniel, William F. M., Xie, Guojun, Vatankhah Varnoosfaderani, Mohammad, Burdynska, Joanna, Li, Qiaoxi, Nykypanchuk, Dmytro, Gang, Oleg, Matyjaszewski, Krzysztof, & Sheiko, Sergei S. Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks. United States. https://doi.org/10.1021/acs.macromol.7b00030
Daniel, William F. M., Xie, Guojun, Vatankhah Varnoosfaderani, Mohammad, Burdynska, Joanna, Li, Qiaoxi, Nykypanchuk, Dmytro, Gang, Oleg, Matyjaszewski, Krzysztof, and Sheiko, Sergei S. Fri . "Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks". United States. https://doi.org/10.1021/acs.macromol.7b00030. https://www.osti.gov/servlets/purl/1438302.
@article{osti_1438302,
title = {Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks},
author = {Daniel, William F. M. and Xie, Guojun and Vatankhah Varnoosfaderani, Mohammad and Burdynska, Joanna and Li, Qiaoxi and Nykypanchuk, Dmytro and Gang, Oleg and Matyjaszewski, Krzysztof and Sheiko, Sergei S.},
abstractNote = {The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiators followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 103–104 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (nA). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.},
doi = {10.1021/acs.macromol.7b00030},
journal = {Macromolecules},
number = 5,
volume = 50,
place = {United States},
year = {Fri Feb 24 00:00:00 EST 2017},
month = {Fri Feb 24 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Block Copolymer Thermodynamics: Theory and Experiment
journal, October 1990


Highly Oriented and Ordered Arrays from Block Copolymers via Solvent Evaporation
journal, February 2004

  • Kim, S. H.; Misner, M. J.; Xu, T.
  • Advanced Materials, Vol. 16, Issue 3, p. 226-231
  • DOI: 10.1002/adma.200304906

Microstructure and Mechanical Properties of Semicrystalline−Rubbery−Semicrystalline Triblock Copolymers
journal, July 2005

  • Koo, Chong Min; Wu, Lifeng; Lim, Lisa S.
  • Macromolecules, Vol. 38, Issue 14
  • DOI: 10.1021/ma0501794

Solvent-free, supersoft and superelastic bottlebrush melts and networks
journal, November 2015

  • Daniel, William F. M.; Burdyńska, Joanna; Vatankhah-Varnoosfaderani, Mohammad
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4508

Cylindrical molecular brushes: Synthesis, characterization, and properties
journal, July 2008


Synthesis and Characterization of Molecular Bottlebrushes Prepared by Iron-Based ATRP
journal, November 2012

  • Mukumoto, Kosuke; Li, Yuanchao; Nese, Alper
  • Macromolecules, Vol. 45, Issue 23
  • DOI: 10.1021/ma3020867

Synthesis of Ultralarge Molecular Weight Bottlebrush Polymers Using Grubbs' Catalysts
journal, May 2004

  • Jha, Sheuli; Dutta, Samrat; Bowden, Ned B.
  • Macromolecules, Vol. 37, Issue 12
  • DOI: 10.1021/ma049647k

Stimuli-responsive molecular brushes
journal, January 2010


Bioinspired Bottle-Brush Polymer Exhibits Low Friction and Amontons-like Behavior
journal, April 2014

  • Banquy, Xavier; Burdyńska, Joanna; Lee, Dong Woog
  • Journal of the American Chemical Society, Vol. 136, Issue 17
  • DOI: 10.1021/ja501770y

Linear Rheology of Polyolefin-Based Bottlebrush Polymers
journal, June 2015


Linear Rheological Response of a Series of Densely Branched Brush Polymers
journal, September 2011

  • Hu, Miao; Xia, Yan; McKenna, Gregory B.
  • Macromolecules, Vol. 44, Issue 17, p. 6935-6943
  • DOI: 10.1021/ma2009673

Bottlebrush Elastomers: A New Platform for Freestanding Electroactuation
journal, November 2016

  • Vatankhah-Varnoosfaderani, Mohammad; Daniel, William F. M.; Zhushma, Alexandr P.
  • Advanced Materials, Vol. 29, Issue 2
  • DOI: 10.1002/adma.201604209

Hetero-Grafted Block Brushes with PCL and PBA Side Chains
journal, August 2008

  • Lee, Hyung-il; Matyjaszewski, Krzysztof; Yu-Su, Sherryl
  • Macromolecules, Vol. 41, Issue 16
  • DOI: 10.1021/ma800412s

ABA Triblock Brush Polymers: Synthesis, Self-Assembly, Conductivity, and Rheological Properties
journal, July 2015


Aqueous Self-Assembly of Giant Bottlebrush Block Copolymer Surfactants as Shape-Tunable Building Blocks
journal, May 2014

  • Fenyves, Ryan; Schmutz, Marc; Horner, Ian J.
  • Journal of the American Chemical Society, Vol. 136, Issue 21
  • DOI: 10.1021/ja503283r

Bottlebrush Block Polymers: Quantitative Theory and Experiments
journal, October 2015

  • Dalsin, Samuel J.; Rions-Maehren, Thomas G.; Beam, Marissa D.
  • ACS Nano, Vol. 9, Issue 12
  • DOI: 10.1021/acsnano.5b05473

Efficient Synthesis of Narrowly Dispersed Brush Copolymers and Study of Their Assemblies: The Importance of Side Chain Arrangement
journal, December 2009

  • Xia, Yan; Olsen, Bradley D.; Kornfield, Julia A.
  • Journal of the American Chemical Society, Vol. 131, Issue 51, p. 18525-18532
  • DOI: 10.1021/ja908379q

How Far Can We Push Polymer Architectures?
journal, March 2013

  • Stals, Patrick J. M.; Li, Yuanchao; Burdyńska, Joanna
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja400890v

Design of Graft Block Polymer Thermoplastics
journal, November 2016


Tough and Sustainable Graft Block Copolymer Thermoplastics
journal, March 2016


Cylindrical nanocapsules from photo-cross-linkable core–shell bottlebrush copolymers
journal, January 2015

  • Onbulak, Sebla; Rzayev, Javid
  • Polymer Chemistry, Vol. 6, Issue 5
  • DOI: 10.1039/C4PY01215A

Alternating Lamellar Structure of Triblock Copolymers of the ABA Type
journal, August 1995

  • Matsushita, Y.; Nomura, M.; Watanabe, J.
  • Macromolecules, Vol. 28, Issue 18
  • DOI: 10.1021/ma00122a004

Bridging attraction by telechelic polymers
journal, September 1992

  • Milner, Scott T.; Witten, Thomas A.
  • Macromolecules, Vol. 25, Issue 20
  • DOI: 10.1021/ma00046a057

Micellization and Gelation of Symmetric Triblock Copolymers with Insoluble End Blocks
journal, February 1995

  • Nguyen-Misra, Mai; Mattice, Wayne L.
  • Macromolecules, Vol. 28, Issue 5
  • DOI: 10.1021/ma00109a015

Synthesis and Visualization of Densely Grafted Molecular Brushes with Crystallizable Poly(octadecyl methacrylate) Block Segments
journal, February 2003

  • Qin, Shuhui; Matyjaszewski, Krzysztof; Xu, Hui
  • Macromolecules, Vol. 36, Issue 3
  • DOI: 10.1021/ma021472w

Crystallization of Molecular Brushes with Block Copolymer Side Chains
journal, November 2009

  • Yu-Su, Sherryl Y.; Sheiko, Sergei S.; Lee, Hyung-il
  • Macromolecules, Vol. 42, Issue 22
  • DOI: 10.1021/ma901432v

Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes
journal, May 1995

  • Wang, Jin-Shan; Matyjaszewski, Krzysztof
  • Journal of the American Chemical Society, Vol. 117, Issue 20
  • DOI: 10.1021/ja00125a035

Atom Transfer Radical Polymerization
journal, September 2001

  • Matyjaszewski, Krzysztof; Xia, Jianhui
  • Chemical Reviews, Vol. 101, Issue 9
  • DOI: 10.1021/cr940534g

Activators Regenerated by Electron Transfer Atom Transfer Radical Polymerization in Miniemulsion with 50 ppm of Copper Catalyst
journal, August 2013

  • Elsen, Andrea M.; Burdyńska, Joanna; Park, Sangwoo
  • ACS Macro Letters, Vol. 2, Issue 9
  • DOI: 10.1021/mz400428e

Surface Segregation in Polymer Blends Driven by Surface Freezing
journal, October 2006

  • Prasad, Shishir; Hanne, Laurie; Dhinojwala, Ali
  • Macromolecules, Vol. 39, Issue 22
  • DOI: 10.1021/ma061266e

Molecular Bottlebrushes with Bimodal Length Distribution of Side Chains
journal, July 2015


Universality in Nonlinear Elasticity of Biological and Polymeric Networks and Gels
journal, January 2011

  • Dobrynin, Andrey V.; Carrillo, Jan-Michael Y.
  • Macromolecules, Vol. 44, Issue 1
  • DOI: 10.1021/ma102154u

Works referencing / citing this record:

Syntheses of triblock bottlebrush polymers through sequential ROMPs: Expanding the functionalities of molecular brushes: RAPID COMMUNICATION
journal, May 2017

  • Su, Lu; Heo, Gyu Seong; Lin, Yen-Nan
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 55, Issue 18
  • DOI: 10.1002/pola.28647

Effect of side chain and backbone length on lamellar spacing in polystyrene‐block‐poly(dimethyl siloxane) brush block copolymers
journal, March 2019

  • Fei, Huafeng; Yavitt, Benjamin M.; Kopanati, Gayathri
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 57, Issue 11
  • DOI: 10.1002/polb.24824

Ultra-high resolution imaging of thin films and single strands of polythiophene using atomic force microscopy
journal, April 2019

  • Korolkov, Vladimir V.; Summerfield, Alex; Murphy, Alanna
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-09571-6

Synthesis and visualization of molecular brush- on -brush based hierarchically branched structures
journal, January 2020

  • Fu, Xiaowei; Guo, Zi-Hao; Le, An N.
  • Polymer Chemistry, Vol. 11, Issue 2
  • DOI: 10.1039/c9py01075k

Computational Investigation of the Effect of Network Architecture on Mechanical Properties of Dynamically Cross‐Linked Polymer Materials
journal, April 2019

  • Zanjani, Mehdi B.; Zhang, Borui; Ahammed, Ballal
  • Macromolecular Theory and Simulations, Vol. 28, Issue 4
  • DOI: 10.1002/mats.201900008

Mimicking biological stress–strain behaviour with synthetic elastomers
journal, September 2017

  • Vatankhah-Varnosfaderani, Mohammad; Daniel, William F. M.; Everhart, Matthew H.
  • Nature, Vol. 549, Issue 7673
  • DOI: 10.1038/nature23673

Bottom-up design of model network elastomers and hydrogels from precise star polymers
journal, January 2019

  • Creusen, Guido; Roshanasan, Ardeshir; Garcia Lopez, Javier
  • Polymer Chemistry, Vol. 10, Issue 27
  • DOI: 10.1039/c9py00731h