skip to main content

DOE PAGESDOE PAGES

Title: Nanoporous poly(3-hexylthiophene) thin film structures from self-organization of a tunable molecular bottlebrush scaffold

The ability to widely tune the design of macromolecular bottlebrushes provides access to self-assembled nanostructures formed by microphase segregation in melt, thin film and solution that depart from structures adopted by simple linear copolymers. A series of random bottlebrush copolymers containing poly(3-hexylthiophene) (P3HT) and poly(D,L-lactide) (PLA) side chains grafted on a poly(norbornene) backbone were synthesized via ring-opening metathesis polymerization (ROMP) using the grafting through approach. P3HT side chains induce a physical aggregation of the bottlebrush copolymers upon solvent removal by vacuum drying, primarily driven by attractive π–π interactions; however, the amount of aggregation can be controlled by adjusting side chain composition or by adding linear P3HT chains to the bottlebrush copolymers. Coarse-grained molecular dynamics simulations reveal that linear P3HT chains preferentially associate with P3HT side chains of bottlebrush copolymers, which tends to reduce the aggregation. The nanoscale morphology of microphase segregated thin films created by casting P3HT–PLA random bottlebrush copolymers is highly dependent on the composition of P3HT and PLA side chains, while domain spacing of nanostructures is mainly determined by the length of the side chains. The selective removal of PLA side chains under alkaline conditions generates nanoporous P3HT structures that can be tuned by manipulating molecular design ofmore » the bottlebrush scaffold, which is affected by molecular weight and grafting density of the side chains, and their sequence. Furthermore, the ability to exploit the unusual architecture of bottlebrushes to fabricate tunable nanoporous P3HT thin film structures may be a useful way to design templates for optoelectronic applications or membranes for separations.« less
Authors:
ORCiD logo [1] ; ORCiD logo [2] ;  [2] ;  [2] ;  [2] ;  [2] ; ORCiD logo [2] ;  [3]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pusan National Univ., Busan (Korea)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Univ. of Tennessee, Knoxville, TN (United States)
Publication Date:
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
Nanoscale
Additional Journal Information:
Journal Volume: 9; Journal Issue: 21; Journal ID: ISSN 2040-3364
Publisher:
Royal Society of Chemistry
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE
OSTI Identifier:
1376375

Ahn, Suk-kyun, Carrillo, Jan-Michael Y., Keum, Jong K., Chen, Jihua, Uhrig, David, Lokitz, Bradley S., Sumpter, Bobby G., and Kilbey, II, S. Michael. Nanoporous poly(3-hexylthiophene) thin film structures from self-organization of a tunable molecular bottlebrush scaffold. United States: N. p., Web. doi:10.1039/C7NR00015D.
Ahn, Suk-kyun, Carrillo, Jan-Michael Y., Keum, Jong K., Chen, Jihua, Uhrig, David, Lokitz, Bradley S., Sumpter, Bobby G., & Kilbey, II, S. Michael. Nanoporous poly(3-hexylthiophene) thin film structures from self-organization of a tunable molecular bottlebrush scaffold. United States. doi:10.1039/C7NR00015D.
Ahn, Suk-kyun, Carrillo, Jan-Michael Y., Keum, Jong K., Chen, Jihua, Uhrig, David, Lokitz, Bradley S., Sumpter, Bobby G., and Kilbey, II, S. Michael. 2017. "Nanoporous poly(3-hexylthiophene) thin film structures from self-organization of a tunable molecular bottlebrush scaffold". United States. doi:10.1039/C7NR00015D. https://www.osti.gov/servlets/purl/1376375.
@article{osti_1376375,
title = {Nanoporous poly(3-hexylthiophene) thin film structures from self-organization of a tunable molecular bottlebrush scaffold},
author = {Ahn, Suk-kyun and Carrillo, Jan-Michael Y. and Keum, Jong K. and Chen, Jihua and Uhrig, David and Lokitz, Bradley S. and Sumpter, Bobby G. and Kilbey, II, S. Michael},
abstractNote = {The ability to widely tune the design of macromolecular bottlebrushes provides access to self-assembled nanostructures formed by microphase segregation in melt, thin film and solution that depart from structures adopted by simple linear copolymers. A series of random bottlebrush copolymers containing poly(3-hexylthiophene) (P3HT) and poly(D,L-lactide) (PLA) side chains grafted on a poly(norbornene) backbone were synthesized via ring-opening metathesis polymerization (ROMP) using the grafting through approach. P3HT side chains induce a physical aggregation of the bottlebrush copolymers upon solvent removal by vacuum drying, primarily driven by attractive π–π interactions; however, the amount of aggregation can be controlled by adjusting side chain composition or by adding linear P3HT chains to the bottlebrush copolymers. Coarse-grained molecular dynamics simulations reveal that linear P3HT chains preferentially associate with P3HT side chains of bottlebrush copolymers, which tends to reduce the aggregation. The nanoscale morphology of microphase segregated thin films created by casting P3HT–PLA random bottlebrush copolymers is highly dependent on the composition of P3HT and PLA side chains, while domain spacing of nanostructures is mainly determined by the length of the side chains. The selective removal of PLA side chains under alkaline conditions generates nanoporous P3HT structures that can be tuned by manipulating molecular design of the bottlebrush scaffold, which is affected by molecular weight and grafting density of the side chains, and their sequence. Furthermore, the ability to exploit the unusual architecture of bottlebrushes to fabricate tunable nanoporous P3HT thin film structures may be a useful way to design templates for optoelectronic applications or membranes for separations.},
doi = {10.1039/C7NR00015D},
journal = {Nanoscale},
number = 21,
volume = 9,
place = {United States},
year = {2017},
month = {4}
}

Works referenced in this record:

Rapid self-assembly of brush block copolymers to photonic crystals
journal, August 2012
  • Sveinbjornsson, B. R.; Weitekamp, R. A.; Miyake, G. M.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 36, p. 14332-14336
  • DOI: 10.1073/pnas.1213055109

Precisely Tunable Photonic Crystals From Rapidly Self-Assembling Brush Block Copolymer Blends
journal, September 2012
  • Miyake, Garret M.; Piunova, Victoria A.; Weitekamp, Raymond A.
  • Angewandte Chemie International Edition, Vol. 51, Issue 45, p. 11246-11248
  • DOI: 10.1002/anie.201205743

Cylindrical polymer brushes
journal, January 2005
  • Zhang, Mingfu; Müller, Axel H. E.
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 43, Issue 16, p. 3461-3481
  • DOI: 10.1002/pola.20900

Phase Diagram of P3HT/PCBM Blends and Its Implication for the Stability of Morphology
journal, February 2009
  • Zhao, Jun; Swinnen, Ann; Van Assche, Guy
  • The Journal of Physical Chemistry B, Vol. 113, Issue 6, p. 1587-1591
  • DOI: 10.1021/jp804151a

Efficient Synthesis of Narrowly Dispersed Brush Copolymers and Study of Their Assemblies: The Importance of Side Chain Arrangement
journal, December 2009
  • Xia, Yan; Olsen, Bradley D.; Kornfield, Julia A.
  • Journal of the American Chemical Society, Vol. 131, Issue 51, p. 18525-18532
  • DOI: 10.1021/ja908379q