DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exploring New Assembly Modes of Uranyl Terephthalate: Templated Syntheses and Structural Regulation of a Series of Rare 2D → 3D Polycatenated Frameworks

Abstract

In this paper, the reaction of uranyl nitrate with terephthalic acid (H2TP) under hydrothermal conditions in the presence of an organic base, 1,3-(4,4'-bispyridyl)propane (BPP) or 4,4'-bipyridine (BPY), provided four uranyl terephthalate compounds with different entangled structures by a pH-tuning method. [UO2(TP)1.5](H2BPP)0.5·2H2O (1) obtained in a relatively acidic solution (final aqueous pH, 4.28) crystallizes in the form of a noninterpenetrated honeycomb-like two-dimensional network structure. An elevation of the solution pH (final pH, 5.21) promotes the formation of a dimeric uranyl-mediated polycatenated framework, [(UO2)2(μ-OH)2(TP)2]2(H2BPP)2·4.5H2O (2). Another new polycatenated framework with a monomeric uranyl unit, [(UO2)2(TP)3](H2BPP) (3), begins to emerge as a minor accompanying product of 2 when the pH is increased up to 6.61, and turns out to be a significant product at pH 7.00. When more rigid but small-size BPY molecules replace BPP molecules, [UO2(TP)1.5](H2BPP)0.5 (4) with a polycatenated framework similar to 3 was obtained in a relatively acidic solution (final pH, 4.81). The successful preparation of 2–4 represents the first report of uranyl–organic polycatenated frameworks derived from a simple H2TP linker. Finally, a direct comparison between these polycatenated frameworks and previously reported uranyl terephthalate compounds suggests that the template and cavity-filling effects of organic bases (such as BPP or BPY),more » in combination with specific hydrothermal conditions, promote the formation of uranyl terephthalate polycatenated frameworks.« less

Authors:
ORCiD logo [1];  [1];  [1];  [2];  [3]; ORCiD logo [4]; ORCiD logo [1]
  1. Chinese Academy of Sciences (CAS), Beijing (China). Lab. of Nuclear Energy Chemistry. Inst. of High Energy Physics
  2. Chinese Academy of Sciences (CAS), Beijing (China). Beijing Synchrotron Radiation Facility. Inst. of High Energy Physics
  3. Chinese Academy of Sciences (CAS), Beijing (China). Lab. of Nuclear Energy Chemistry. Inst. of High Energy Physics; Soochow Univ., Suzhou (China). School of Radiological and Interdisciplinary Sciences. Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Natural Science Foundation of China (NSFC); Ministry of Industry and Information Technology of China
OSTI Identifier:
1436634
Grant/Contract Number:  
AC02-05CH11231; 21671191; 21577144; 11405186; 91426302; 91326202; JCKY2016212A504
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 56; Journal Issue: 14; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY

Citation Formats

Mei, Lei, Wang, Cong-zhi, Zhu, Liu-zheng, Gao, Zeng-qiang, Chai, Zhi-fang, Gibson, John K., and Shi, Wei-qun. Exploring New Assembly Modes of Uranyl Terephthalate: Templated Syntheses and Structural Regulation of a Series of Rare 2D → 3D Polycatenated Frameworks. United States: N. p., 2017. Web. doi:10.1021/acs.inorgchem.7b00312.
Mei, Lei, Wang, Cong-zhi, Zhu, Liu-zheng, Gao, Zeng-qiang, Chai, Zhi-fang, Gibson, John K., & Shi, Wei-qun. Exploring New Assembly Modes of Uranyl Terephthalate: Templated Syntheses and Structural Regulation of a Series of Rare 2D → 3D Polycatenated Frameworks. United States. https://doi.org/10.1021/acs.inorgchem.7b00312
Mei, Lei, Wang, Cong-zhi, Zhu, Liu-zheng, Gao, Zeng-qiang, Chai, Zhi-fang, Gibson, John K., and Shi, Wei-qun. Fri . "Exploring New Assembly Modes of Uranyl Terephthalate: Templated Syntheses and Structural Regulation of a Series of Rare 2D → 3D Polycatenated Frameworks". United States. https://doi.org/10.1021/acs.inorgchem.7b00312. https://www.osti.gov/servlets/purl/1436634.
@article{osti_1436634,
title = {Exploring New Assembly Modes of Uranyl Terephthalate: Templated Syntheses and Structural Regulation of a Series of Rare 2D → 3D Polycatenated Frameworks},
author = {Mei, Lei and Wang, Cong-zhi and Zhu, Liu-zheng and Gao, Zeng-qiang and Chai, Zhi-fang and Gibson, John K. and Shi, Wei-qun},
abstractNote = {In this paper, the reaction of uranyl nitrate with terephthalic acid (H2TP) under hydrothermal conditions in the presence of an organic base, 1,3-(4,4'-bispyridyl)propane (BPP) or 4,4'-bipyridine (BPY), provided four uranyl terephthalate compounds with different entangled structures by a pH-tuning method. [UO2(TP)1.5](H2BPP)0.5·2H2O (1) obtained in a relatively acidic solution (final aqueous pH, 4.28) crystallizes in the form of a noninterpenetrated honeycomb-like two-dimensional network structure. An elevation of the solution pH (final pH, 5.21) promotes the formation of a dimeric uranyl-mediated polycatenated framework, [(UO2)2(μ-OH)2(TP)2]2(H2BPP)2·4.5H2O (2). Another new polycatenated framework with a monomeric uranyl unit, [(UO2)2(TP)3](H2BPP) (3), begins to emerge as a minor accompanying product of 2 when the pH is increased up to 6.61, and turns out to be a significant product at pH 7.00. When more rigid but small-size BPY molecules replace BPP molecules, [UO2(TP)1.5](H2BPP)0.5 (4) with a polycatenated framework similar to 3 was obtained in a relatively acidic solution (final pH, 4.81). The successful preparation of 2–4 represents the first report of uranyl–organic polycatenated frameworks derived from a simple H2TP linker. Finally, a direct comparison between these polycatenated frameworks and previously reported uranyl terephthalate compounds suggests that the template and cavity-filling effects of organic bases (such as BPP or BPY), in combination with specific hydrothermal conditions, promote the formation of uranyl terephthalate polycatenated frameworks.},
doi = {10.1021/acs.inorgchem.7b00312},
journal = {Inorganic Chemistry},
number = 14,
volume = 56,
place = {United States},
year = {Fri Jun 23 00:00:00 EDT 2017},
month = {Fri Jun 23 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 35 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Recent Developments in Synthesis and Structural Chemistry of Nonaqueous Actinide Complexes
journal, October 2012

  • Jones, Matthew B.; Gaunt, Andrew J.
  • Chemical Reviews, Vol. 113, Issue 2
  • DOI: 10.1021/cr300198m

Multicoordinate ligands for actinide/lanthanide separations
journal, January 2007

  • Dam, Henk H.; Reinhoudt, David N.; Verboom, Willem
  • Chem. Soc. Rev., Vol. 36, Issue 2
  • DOI: 10.1039/B603847F

Solution coordination chemistry of actinides: Thermodynamics, structure and reaction mechanisms
journal, April 2006


Nature of the 5 f states in actinide metals
journal, February 2009


Structures of Plutonium(IV) and Uranium(VI) with N , N -Dialkyl Amides from Crystallography, X-ray Absorption Spectra, and Theoretical Calculations
journal, May 2016


Solution and Solid-State Structural Chemistry of Actinide Hydrates and Their Hydrolysis and Condensation Products
journal, October 2012

  • Knope, Karah E.; Soderholm, L.
  • Chemical Reviews, Vol. 113, Issue 2
  • DOI: 10.1021/cr300212f

Extended Structures and Physicochemical Properties of Uranyl–Organic Compounds
journal, July 2011

  • Wang, Kai-Xue; Chen, Jie-Sheng
  • Accounts of Chemical Research, Vol. 44, Issue 7
  • DOI: 10.1021/ar200042t

The crystal chemistry of uranium carboxylates
journal, May 2014

  • Loiseau, Thierry; Mihalcea, Ionut; Henry, Natacha
  • Coordination Chemistry Reviews, Vol. 266-267
  • DOI: 10.1016/j.ccr.2013.08.038

Uranyl Bearing Hybrid Materials: Synthesis, Speciation, and Solid-State Structures
journal, August 2012

  • Andrews, Michael B.; Cahill, Christopher L.
  • Chemical Reviews, Vol. 113, Issue 2
  • DOI: 10.1021/cr300202a

Three-Dimensional MOF-Type Architectures with Tetravalent Uranium Hexanuclear Motifs (U 6 O 8 )
journal, January 2013

  • Falaise, Clément; Volkringer, Christophe; Vigier, Jean-François
  • Chemistry - A European Journal, Vol. 19, Issue 17
  • DOI: 10.1002/chem.201203914

Coordination polymers of uranium( iv ) terephthalates
journal, January 2015

  • Falaise, Clément; Assen, Ayalew; Mihalcea, Ionut
  • Dalton Transactions, Vol. 44, Issue 6
  • DOI: 10.1039/C4DT02343A

Mixed Formate-Dicarboxylate Coordination Polymers with Tetravalent Uranium: Occurrence of Tetranuclear {U 4 O 4 } and Hexanuclear {U 6 O 4 (OH) 4 } Motifs
journal, June 2013

  • Falaise, Clément; Volkringer, Christophe; Loiseau, Thierry
  • Crystal Growth & Design, Vol. 13, Issue 7
  • DOI: 10.1021/cg400643g

The templated synthesis of a unique type of tetra-nuclear uranyl-mediated two-fold interpenetrating uranyl–organic framework
journal, January 2016

  • An, Shu-wen; Mei, Lei; Hu, Kong-qiu
  • Chemical Communications, Vol. 52, Issue 8
  • DOI: 10.1039/C5CC09314G

Uranyl Ion Complexes with Cucurbit[ n ]urils ( n = 6, 7, and 8): A New Family of Uranyl-Organic Frameworks
journal, November 2008


Preparation, Structures, and Photocatalytic Properties of Three New Uranyl−Organic Assembly Compounds
journal, June 2008

  • Liao, Zuo-Lei; Li, Guo-Dong; Bi, Ming-Hui
  • Inorganic Chemistry, Vol. 47, Issue 11
  • DOI: 10.1021/ic800109y

Chiral uranyl-organic compounds assembled with achiral furandicarboxylic acid by spontaneous resolution
journal, January 2013

  • Wang, Hao; Chang, Ze; Li, Yue
  • Chemical Communications, Vol. 49, Issue 59
  • DOI: 10.1039/c3cc42255k

Six-Fold Coordinated Uranyl Cations in Extended Coordination Polymers
journal, August 2012

  • Mihalcea, Ionut; Henry, Natacha; Bousquet, Till
  • Crystal Growth & Design, Vol. 12, Issue 9
  • DOI: 10.1021/cg300853f

Silver Ion-Mediated Heterometallic Three-Fold Interpenetrating Uranyl–Organic Framework
journal, October 2015


Synthesis, Structure, and Photoelectronic Effects of a Uranium−Zinc−Organic Coordination Polymer Containing Infinite Metal Oxide Sheets
journal, August 2003

  • Chen, Wei; Yuan, Hong-Ming; Wang, Jia-Yu
  • Journal of the American Chemical Society, Vol. 125, Issue 31
  • DOI: 10.1021/ja035388n

Uranyl Ion Complexes with Cucurbit[5]uril: from Molecular Capsules to Uranyl-Organic Frameworks
journal, February 2009


Construction of Three-Dimensional Uranyl-Organic Frameworks with Benzenetricarboxylate Ligands
journal, June 2010

  • Liao, Zuo-Lei; Li, Guo-Dong; Wei, Xiao
  • European Journal of Inorganic Chemistry, Vol. 2010, Issue 24
  • DOI: 10.1002/ejic.201000298

3-Fold-Interpenetrated Uranium–Organic Frameworks: New Strategy for Rationally Constructing Three-Dimensional Uranyl Organic Materials
journal, February 2012

  • Wu, Hong-Yue; Wang, Run-Xue; Yang, Weiting
  • Inorganic Chemistry, Vol. 51, Issue 5
  • DOI: 10.1021/ic202577z

From 1D Chain to 3D Framework Uranyl Diphosphonates: Syntheses, Crystal Structures, and Selective Ion Exchange
journal, October 2012

  • Yang, Weiting; Wu, Hong-Yue; Wang, Run-Xue
  • Inorganic Chemistry, Vol. 51, Issue 21
  • DOI: 10.1021/ic301183h

Uranyl–Organic Frameworks with Polycarboxylates: Unusual Effects of a Coordinating Solvent
journal, January 2014

  • Thuéry, Pierre; Harrowfield, Jack
  • Crystal Growth & Design, Vol. 14, Issue 3
  • DOI: 10.1021/cg4018163

Solvothermal synthesis of uranium(VI) phases with aromatic carboxylate ligands: A dinuclear complex with 4-hydroxybenzoic acid and a 3D framework with terephthalic acid
journal, February 2016

  • Zhang, Yingjie; Karatchevtseva, Inna; Bhadbhade, Mohan
  • Journal of Solid State Chemistry, Vol. 234
  • DOI: 10.1016/j.jssc.2015.11.031

Entangled Two-Dimensional Coordination Networks: A General Survey
journal, June 2014

  • Carlucci, Lucia; Ciani, Gianfranco; Proserpio, Davide M.
  • Chemical Reviews, Vol. 114, Issue 15
  • DOI: 10.1021/cr500150m

Interpenetrating Nets: Ordered, Periodic Entanglement
journal, June 1998


Polycatenation, polythreading and polyknotting in coordination network chemistry
journal, November 2003

  • Carlucci, Lucia; Ciani, Gianfranco; Proserpio, Davide M.
  • Coordination Chemistry Reviews, Vol. 246, Issue 1-2, p. 247-289
  • DOI: 10.1016/S0010-8545(03)00126-7

Polycatenation weaves a 3D web
journal, June 2010


Role of N-Donor Sterics on the Coordination Environment and Dimensionality of Uranyl Thiophenedicarboxylate Coordination Polymers
journal, June 2015

  • Thangavelu, Sonia G.; Butcher, Ray J.; Cahill, Christopher L.
  • Crystal Growth & Design, Vol. 15, Issue 7
  • DOI: 10.1021/acs.cgd.5b00549

New Three-Fold Interpenetrated Uranyl Organic Framework Constructed by Terephthalic Acid and Imidazole Derivative
journal, March 2015


(6,3)-Honeycomb Structures of Uranium(VI) Benzenedicarboxylate Derivatives:  The Use of Noncovalent Interactions to Prevent Interpenetration
journal, August 2007

  • Go, Yong Bok; Wang, Xiqu; Jacobson, Allan J.
  • Inorganic Chemistry, Vol. 46, Issue 16
  • DOI: 10.1021/ic700693f

Umbellate Distortions of the Uranyl Coordination Environment Result in a Stable and Porous Polycatenated Framework That Can Effectively Remove Cesium from Aqueous Solutions
journal, May 2015

  • Wang, Yanlong; Liu, Zhiyong; Li, Yuxiang
  • Journal of the American Chemical Society, Vol. 137, Issue 19
  • DOI: 10.1021/jacs.5b02480

Counterion-Induced Variations in the Dimensionality and Topology of Uranyl Pimelate Complexes
journal, April 2016

  • Thuéry, Pierre; Rivière, Eric; Harrowfield, Jack
  • Crystal Growth & Design, Vol. 16, Issue 5
  • DOI: 10.1021/acs.cgd.6b00156

Water-Insoluble Ag-U-Organic Assemblies with Photocatalytic Activity
journal, April 2005

  • Yu, Zhen-Tao; Liao, Zuo-Lei; Jiang, Yu-Sheng
  • Chemistry - A European Journal, Vol. 11, Issue 9
  • DOI: 10.1002/chem.200401189

A Family of Uranyl Coordination Polymers Containing O-Donor Dicarboxylates and Trispyridyltriazine Guests
journal, November 2015

  • Thangavelu, Sonia G.; Cahill, Christopher L.
  • Crystal Growth & Design, Vol. 16, Issue 1
  • DOI: 10.1021/acs.cgd.5b00778

Synthetic, structural, and luminescence study of uranyl coordination polymers containing chelating terpyridine and trispyridyltriazine ligands
journal, January 2015

  • Thangavelu, Sonia G.; Pope, Simon J. A.; Cahill, Christopher L.
  • CrystEngComm, Vol. 17, Issue 32
  • DOI: 10.1039/C5CE00984G

Synthesis, Structures, and Luminescent Properties of Uranyl Terpyridine Aromatic Carboxylate Coordination Polymers
journal, January 2013

  • Thangavelu, Sonia G.; Andrews, Michael B.; Pope, Simon J. A.
  • Inorganic Chemistry, Vol. 52, Issue 4
  • DOI: 10.1021/ic3024698

Uranyl Sensitization of Samarium(III) Luminescence in a Two-Dimensional Coordination Polymer
journal, December 2011

  • Knope, Karah E.; de Lill, Daniel T.; Rowland, Clare E.
  • Inorganic Chemistry, Vol. 51, Issue 1
  • DOI: 10.1021/ic201450e

OLEX2 : a complete structure solution, refinement and analysis program
journal, January 2009

  • Dolomanov, Oleg V.; Bourhis, Luc J.; Gildea, Richard J.
  • Journal of Applied Crystallography, Vol. 42, Issue 2
  • DOI: 10.1107/S0021889808042726

A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

SHELXT – Integrated space-group and crystal-structure determination
journal, January 2015

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations and Advances, Vol. 71, Issue 1, p. 3-8
  • DOI: 10.1107/S2053273314026370

Structure validation in chemical crystallography
journal, January 2009

  • Spek, Anthony L.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 65, Issue 2, p. 148-155
  • DOI: 10.1107/S090744490804362X

The Extended PLATON/SQUEEZE Tool in the Context of Twinning and SHELXL2014
journal, August 2014


Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Energy‐adjusted a b i n i t i o pseudopotentials for the rare earth elements
journal, February 1989

  • Dolg, M.; Stoll, H.; Preuss, H.
  • The Journal of Chemical Physics, Vol. 90, Issue 3
  • DOI: 10.1063/1.456066

Energy‐adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide
journal, May 1994

  • Küchle, W.; Dolg, M.; Stoll, H.
  • The Journal of Chemical Physics, Vol. 100, Issue 10
  • DOI: 10.1063/1.466847

Segmented contraction scheme for small-core actinide pseudopotential basis sets
journal, March 2004


Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint
journal, September 1988

  • Reed, Alan E.; Curtiss, Larry A.; Weinhold, Frank
  • Chemical Reviews, Vol. 88, Issue 6
  • DOI: 10.1021/cr00088a005

Electronic Structure and Bonding in Actinyl Ions and their Analogs
journal, May 2007

  • Denning, Robert G.
  • The Journal of Physical Chemistry A, Vol. 111, Issue 20
  • DOI: 10.1021/jp071061n

Developments in the photophysics and photochemistry of actinide ions and their coordination compounds
journal, August 2012


Solvent effects in solvo-hydrothermal synthesis of uranyl ion complexes with 1,3-adamantanediacetate
journal, January 2015

  • Thuéry, Pierre; Harrowfield, Jack
  • CrystEngComm, Vol. 17, Issue 21
  • DOI: 10.1039/C5CE00401B

Uranyl and Uranyl–3d Block Cation Complexes with 1,3-Adamantanedicarboxylate: Crystal Structures, Luminescence, and Magnetic Properties
journal, February 2015

  • Thuéry, Pierre; Rivière, Eric; Harrowfield, Jack
  • Inorganic Chemistry, Vol. 54, Issue 6
  • DOI: 10.1021/ic503004j

Study of uranyl(VI) malonate complexation by time resolved laser-induced fluorescence spectroscopy (TRLFS)
journal, January 2002


Crystal Engineering with the Uranyl Cation I. Aliphatic Carboxylate Coordination Polymers:  Synthesis, Crystal Structures, and Fluorescent Properties
journal, October 2006

  • Borkowski, Lauren A.; Cahill, Christopher L.
  • Crystal Growth & Design, Vol. 6, Issue 10
  • DOI: 10.1021/cg060329h

A novel uranium-containing coordination polymer: poly[dioxouranium(VI)-μ 4 - n -pentane-1,5-dicarboxylato]
journal, April 2005

  • Borkowski, Lauren A.; Cahill, Christopher L.
  • Acta Crystallographica Section E Structure Reports Online, Vol. 61, Issue 5
  • DOI: 10.1107/S1600536805009438

Works referencing / citing this record:

Novel Viologen Derivative Based Uranyl Coordination Polymers Featuring Photochromic Behaviors
journal, December 2017

  • Hu, Kong-Qiu; Wu, Qun-Yan; Mei, Lei
  • Chemistry - A European Journal, Vol. 23, Issue 71
  • DOI: 10.1002/chem.201704478

Regulation of the Degree of Interpenetration in Metal–Organic Frameworks
journal, December 2019

  • Verma, Gaurav; Butikofer, Sydney; Kumar, Sanjay
  • Topics in Current Chemistry, Vol. 378, Issue 1
  • DOI: 10.1007/s41061-019-0268-x

Non-covalent interactions of uranyl complexes: a theoretical study
journal, January 2018

  • Platts, James A.; Baker, Robert J.
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 22
  • DOI: 10.1039/c8cp02444h

Actinide-Based Porphyrinic MOF as a Dehydrogenation Catalyst
journal, October 2018

  • Hu, Kong-Qiu; Huang, Zhi-Wei; Zhang, Zhi-Hui
  • Chemistry - A European Journal, Vol. 24, Issue 63
  • DOI: 10.1002/chem.201804284

Metal‐Carboxyl Helical Chain Secondary Units Supported Ion‐Exchangeable Anionic Uranyl–Organic Framework
journal, July 2019