DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reactivity of Silanes with (tBuPONOP)Ruthenium Dichloride: Facile Synthesis of Chloro-Silyl Ruthenium Compounds and Formic Acid Decomposition

Abstract

The coordination of tBuPONOP (tBuPONOP=2,6-bis(ditert-butylphosphinito)pyridine) to different ruthenium starting materials, to generate (tBuPONOP)RuCl2, was investigated in this paper. The resultant (tBuPONOP)RuCl2 reactivity with three different silanes was then investigated and contrasted dramatically with the reactivity of (iPrPONOP)RuCl2(DMSO) (iPrPONOP=2,6-bis(diisopropylphosphinito)pyridine) with the same silanes. The 16-electron species (tBuPONOP)Ru(H)Cl was produced from the reaction of triethylsilane with (tBuPONOP)RuCl2. Reactions of (tBuPONOP)RuCl2 with both phenylsilane or diphenylsilane afforded the 16-electron hydrido-silyl species (tBuPONOP)Ru(H)(PhSiCl2) and (tBuPONOP)Ru(H)(Ph2SiCl), respectively. Reactions of all three of these complexes with silver triflate afforded the simple salt metathesis products of (tBuPONOP)Ru(H)(OTf), (tBuPONOP)Ru(H)(PhSiCl(OTf)), and (tBuPONOP)Ru(H)(Ph2Si(OTf)). Formic acid dehydrogenation was performed in the presence of triethylamine (TEA), and each species proved competent for gas-pressure generation of CO2 and H2. Finally, the hydride species (tBuPONOP)Ru(H)Cl, (tBuPONOP)Ru(H)(OTf), and (tBuPONOP)Ru(H)(PhSiCl2) exhibited faster catalytic activity than the other compounds tested.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1435519
Report Number(s):
LA-UR-17-25821
Journal ID: ISSN 0947-6539
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry - A European Journal
Additional Journal Information:
Journal Volume: 23; Journal Issue: 55; Journal ID: ISSN 0947-6539
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; dehydrogenation; formic acid; PONOP ligand; ruthenium; silyl group

Citation Formats

Anderson, Nickolas H., Boncella, James M., and Tondreau, Aaron M. Reactivity of Silanes with (tBuPONOP)Ruthenium Dichloride: Facile Synthesis of Chloro-Silyl Ruthenium Compounds and Formic Acid Decomposition. United States: N. p., 2017. Web. doi:10.1002/chem.201703722.
Anderson, Nickolas H., Boncella, James M., & Tondreau, Aaron M. Reactivity of Silanes with (tBuPONOP)Ruthenium Dichloride: Facile Synthesis of Chloro-Silyl Ruthenium Compounds and Formic Acid Decomposition. United States. https://doi.org/10.1002/chem.201703722
Anderson, Nickolas H., Boncella, James M., and Tondreau, Aaron M. Tue . "Reactivity of Silanes with (tBuPONOP)Ruthenium Dichloride: Facile Synthesis of Chloro-Silyl Ruthenium Compounds and Formic Acid Decomposition". United States. https://doi.org/10.1002/chem.201703722. https://www.osti.gov/servlets/purl/1435519.
@article{osti_1435519,
title = {Reactivity of Silanes with (tBuPONOP)Ruthenium Dichloride: Facile Synthesis of Chloro-Silyl Ruthenium Compounds and Formic Acid Decomposition},
author = {Anderson, Nickolas H. and Boncella, James M. and Tondreau, Aaron M.},
abstractNote = {The coordination of tBuPONOP (tBuPONOP=2,6-bis(ditert-butylphosphinito)pyridine) to different ruthenium starting materials, to generate (tBuPONOP)RuCl2, was investigated in this paper. The resultant (tBuPONOP)RuCl2 reactivity with three different silanes was then investigated and contrasted dramatically with the reactivity of (iPrPONOP)RuCl2(DMSO) (iPrPONOP=2,6-bis(diisopropylphosphinito)pyridine) with the same silanes. The 16-electron species (tBuPONOP)Ru(H)Cl was produced from the reaction of triethylsilane with (tBuPONOP)RuCl2. Reactions of (tBuPONOP)RuCl2 with both phenylsilane or diphenylsilane afforded the 16-electron hydrido-silyl species (tBuPONOP)Ru(H)(PhSiCl2) and (tBuPONOP)Ru(H)(Ph2SiCl), respectively. Reactions of all three of these complexes with silver triflate afforded the simple salt metathesis products of (tBuPONOP)Ru(H)(OTf), (tBuPONOP)Ru(H)(PhSiCl(OTf)), and (tBuPONOP)Ru(H)(Ph2Si(OTf)). Formic acid dehydrogenation was performed in the presence of triethylamine (TEA), and each species proved competent for gas-pressure generation of CO2 and H2. Finally, the hydride species (tBuPONOP)Ru(H)Cl, (tBuPONOP)Ru(H)(OTf), and (tBuPONOP)Ru(H)(PhSiCl2) exhibited faster catalytic activity than the other compounds tested.},
doi = {10.1002/chem.201703722},
journal = {Chemistry - A European Journal},
number = 55,
volume = 23,
place = {United States},
year = {Tue Aug 15 00:00:00 EDT 2017},
month = {Tue Aug 15 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: The coordinatively unsaturated compounds: a) (tBuPONOP)Ru(CO), b) (tBuPONOP)Ru(CO)2, c) (tBuPONOP)Ru(H)Cl, and d) (tBuPONOP)RuCl2 (1) by Milstein.

Save / Share:

Works referenced in this record:

A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst
journal, May 2008

  • Fellay, Céline; Dyson, Paul J.; Laurenczy, Gábor
  • Angewandte Chemie International Edition, Vol. 47, Issue 21, p. 3966-3968
  • DOI: 10.1002/anie.200800320

Characterization of a Rhodium(I)  -Methane Complex in Solution
journal, October 2009


Selective Hydrogen Generation from Formic Acid with Well-Defined Complexes of Ruthenium and Phosphorus-Nitrogen PN 3 -Pincer Ligand
journal, April 2016

  • Pan, Yupeng; Pan, Cheng-Ling; Zhang, Yufan
  • Chemistry - An Asian Journal, Vol. 11, Issue 9
  • DOI: 10.1002/asia.201600169

Unprecedentedly High Formic Acid Dehydrogenation Activity on an Iridium Complex with an N , N ′-Diimine Ligand in Water
journal, July 2015

  • Wang, Zhijun; Lu, Sheng-Mei; Li, Jun
  • Chemistry - A European Journal, Vol. 21, Issue 36
  • DOI: 10.1002/chem.201502086

Synthesis, structure and computational studies of a cationic T-shaped Pd-complex
journal, January 2013

  • Walter, Marc D.; White, Peter S.; Brookhart, Maurice
  • New Journal of Chemistry, Vol. 37, Issue 4
  • DOI: 10.1039/c3nj41145a

The synthesis of PNP-supported low-spin nitro manganese(I) carbonyl complexes
journal, September 2016


Continuous Hydrogen Generation from Formic Acid: Highly Active and Stable Ruthenium Catalysts
journal, October 2009

  • Boddien, Albert; Loges, Björn; Junge, Henrik
  • Advanced Synthesis & Catalysis, Vol. 351, Issue 14-15
  • DOI: 10.1002/adsc.200900431

A prolific catalyst for dehydrogenation of neat formic acid
journal, April 2016

  • Celaje, Jeff Joseph A.; Lu, Zhiyao; Kedzie, Elyse A.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11308

Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H 2 /O 2 Fuel Cells
journal, May 2008

  • Loges, Björn; Boddien, Albert; Junge, Henrik
  • Angewandte Chemie International Edition, Vol. 47, Issue 21
  • DOI: 10.1002/anie.200705972

Synthesis and characterization of rigid +2 and +3 heteroleptic dinuclear ruthenium(II) complexes
journal, September 2010


Formic acid dehydrogenation catalysed by ruthenium complexes bearing the tripodal ligands triphos and NP 3
journal, January 2013

  • Mellone, Irene; Peruzzini, Maurizio; Rosi, Luca
  • Dalton Trans., Vol. 42, Issue 7
  • DOI: 10.1039/C2DT32043F

Synthesis and Structures of [(Trimethylsilyl)methyl]sodium and -potassium with Bi- and Tridentate N-Donor Ligands
journal, January 2011

  • Clegg, William; Conway, Ben; Kennedy, Alan R.
  • European Journal of Inorganic Chemistry, Vol. 2011, Issue 5
  • DOI: 10.1002/ejic.201000983

Highly efficient hydrogenation of biomass-derived levulinic acid to γ-valerolactone catalyzed by iridium pincer complexes
journal, January 2012

  • Li, Wei; Xie, Jian-Hua; Lin, Han
  • Green Chemistry, Vol. 14, Issue 9
  • DOI: 10.1039/c2gc35650c

Highly Efficient Reversible Hydrogenation of Carbon Dioxide to Formates Using a Ruthenium PNP-Pincer Catalyst
journal, April 2014

  • Filonenko, Georgy A.; van Putten, Robbert; Schulpen, Erik N.
  • ChemCatChem, Vol. 6, Issue 6
  • DOI: 10.1002/cctc.201402119

Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures
journal, March 2012

  • Hull, Jonathan F.; Himeda, Yuichiro; Wang, Wan-Hui
  • Nature Chemistry, Vol. 4, Issue 5, p. 383-388
  • DOI: 10.1038/nchem.1295

Mechanism of Hydrogenolysis of an Iridium–Methyl Bond: Evidence for a Methane Complex Intermediate
journal, January 2013

  • Campos, Jesús; Kundu, Sabuj; Pahls, Dale R.
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja310982v

A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst
journal, May 2008

  • Fellay, Céline; Dyson, Paul J.; Laurenczy, Gábor
  • Angewandte Chemie, Vol. 120, Issue 21
  • DOI: 10.1002/ange.200800320

Proton-Catalyzed Hydrogenation of a d 8 Ir(I) Complex Yields a trans Ir(III) Dihydride
journal, April 2010

  • Findlater, Michael; Bernskoetter, Wesley H.; Brookhart, Maurice
  • Journal of the American Chemical Society, Vol. 132, Issue 13
  • DOI: 10.1021/ja100168w

Formic Acid as a Hydrogen Energy Carrier
journal, December 2016


The impact of Metal–Ligand Cooperation in Hydrogenation of Carbon Dioxide Catalyzed by Ruthenium PNP Pincer
journal, October 2013

  • Filonenko, Georgy A.; Conley, Matthew P.; Copéret, Christophe
  • ACS Catalysis, Vol. 3, Issue 11
  • DOI: 10.1021/cs4006869

An efficient binuclear catalyst for decomposition of formic acid
journal, January 1998

  • Gao, Yuan; Kuncheria, Joshi; Puddephatt, Richard J.
  • Chemical Communications, Issue 21
  • DOI: 10.1039/a805789c

Synthesis, Characterization, and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes
journal, September 2016


Hydrogen Production by Selective Dehydrogenation of HCOOH Catalyzed by Ru-Biaryl Sulfonated Phosphines in Aqueous Solution
journal, August 2014

  • Guerriero, Antonella; Bricout, Hervé; Sordakis, Katerina
  • ACS Catalysis, Vol. 4, Issue 9
  • DOI: 10.1021/cs500655x

SYNTHESIS OF SILYL RUTHENIUM COMPLEXES, RuH 3 (SiR 3 )(PPh 3 ) 3
journal, August 1974


A Cationic Terminal Methylene Complex of Ir(I) Supported by a Pincer Ligand
journal, March 2013

  • Campos, Jesus; Peloso, Riccardo; Brookhart, Maurice
  • Organometallics, Vol. 32, Issue 11
  • DOI: 10.1021/om400383s

Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N ′-Diimine Ligand
journal, December 2016


A methods study of immobilization of PONOP pincer transition metal complexes on silica polyamine composites (SPC)
journal, April 2016


Chemoselective Hydrogenation and Transfer Hydrogenation of Aldehydes Catalyzed by Iron(II) PONOP Pincer Complexes
journal, April 2015


The interconversion of formic acid and hydrogen/carbon dioxide using a binuclear ruthenium complex catalyst
journal, January 2000

  • Gao, Yuan; Kuncheria, Joshi K.; Jenkins, Hilary A.
  • Journal of the Chemical Society, Dalton Transactions, Issue 18
  • DOI: 10.1039/b004234j

Spin-state diversity in a series of Co( ii ) PNP pincer bromide complexes
journal, January 2016

  • Shaffer, David W.; Bhowmick, Indrani; Rheingold, Arnold L.
  • Dalton Transactions, Vol. 45, Issue 44
  • DOI: 10.1039/C6DT03461F

Phosphine complexes of silylruthenium hydrides. Interaction of silicon hydride with RuH2(PPh3)4, RuCl2(PPh3)3, and RuHCl(PPh3)3
journal, May 1977


A CH 2 Cl 2 complex of a [Rh(pincer)] + cation
journal, January 2015

  • Adams, Gemma M.; Chadwick, F. Mark; Pike, Sebastian D.
  • Dalton Transactions, Vol. 44, Issue 14
  • DOI: 10.1039/C5DT00481K

Stability and Dynamic Processes in 16VE Iridium(III) Ethyl Hydride and Rhodium(I) σ-Ethane Complexes: Experimental and Computational Studies
journal, October 2013

  • Walter, Marc D.; White, Peter S.; Schauer, Cynthia K.
  • Journal of the American Chemical Society, Vol. 135, Issue 42
  • DOI: 10.1021/ja4079539

Formic Acid Dehydrogenation Catalysed by Tris(TPPTS) Ruthenium Species: Mechanism of the Initial “Fast” Cycle
journal, September 2014

  • Thevenon, Arnaud; Frost-Pennington, Ewan; Weijia, Gan
  • ChemCatChem, Vol. 6, Issue 11
  • DOI: 10.1002/cctc.201402410

Hydrogen Generation at Ambient Conditions: Application in Fuel Cells
journal, September 2008


Making M–CN bonds from M–Cl in (PONOP)M and (dippe)Ni systems (M=Ni, Pd, and Pt) using t-BuNC
journal, December 2011

  • Kundu, Sabuj; Brennessel, William W.; Jones, William D.
  • Inorganica Chimica Acta, Vol. 379, Issue 1
  • DOI: 10.1016/j.ica.2011.09.048

Synthesis, structure and electrochemical behavior of new RPONOP (R=tBu, iPr) pincer complexes of Fe2+, Co2+, Ni2+, and Zn2+ ions
journal, January 2016


Reactivity of a Series of Isostructural Cobalt Pincer Complexes with CO 2 , CO, and H +
journal, November 2014

  • Shaffer, David W.; Johnson, Samantha I.; Rheingold, Arnold L.
  • Inorganic Chemistry, Vol. 53, Issue 24
  • DOI: 10.1021/ic5021725

Selective Formic Acid Decomposition for High-Pressure Hydrogen Generation: A Mechanistic Study
journal, February 2009

  • Fellay, Céline; Yan, Ning; Dyson, Paul J.
  • Chemistry - A European Journal, Vol. 15, Issue 15
  • DOI: 10.1002/chem.200801824

Synthesis and characterization of iron complexes based on bis-phosphinite PONOP and bis-phosphite PONOP pincer ligands
journal, December 2014


Reusable Homogeneous Catalytic System for Hydrogen Production from Methanol and Water
journal, July 2014

  • Hu, Peng; Diskin-Posner, Yael; Ben-David, Yehoshoa
  • ACS Catalysis, Vol. 4, Issue 8
  • DOI: 10.1021/cs500937f

Dihydrogen Complexes of Iridium and Rhodium
journal, February 2012

  • Findlater, Michael; Schultz, Katherine M.; Bernskoetter, Wesley H.
  • Inorganic Chemistry, Vol. 51, Issue 8
  • DOI: 10.1021/ic202630x

Synthesis, characterization and reactivity of iron- and cobalt-pincer complexes
journal, August 2016


A Convenient Method for the Reduction of Ruthenium and Rhodium Halide Complexes
journal, September 1975

  • Kono, Hiromichi; Wakao, Naofumi; Nagai, Yoichiro
  • Chemistry Letters, Vol. 4, Issue 9
  • DOI: 10.1246/cl.1975.955

Catalytic Generation of Hydrogen from Formic acid and its Derivatives: Useful Hydrogen Storage Materials
journal, May 2010


Investigations of Iridium-Mediated Reversible C−H Bond Cleavage: Characterization of a 16-Electron Iridium(III) Methyl Hydride Complex
journal, June 2009

  • Bernskoetter, Wesley H.; Hanson, Susan Kloek; Buzak, Sara K.
  • Journal of the American Chemical Society, Vol. 131, Issue 24
  • DOI: 10.1021/ja901706b

Low-Valent Ruthenium Complexes of the Non-innocent 2,6-Bis(imino)pyridine Ligand
journal, February 2010

  • Gallagher, Michelle; Wieder, Noah L.; Dioumaev, Vladimir K.
  • Organometallics, Vol. 29, Issue 3
  • DOI: 10.1021/om9009075

Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage?
journal, January 2010

  • Enthaler, Stephan; von Langermann, Jan; Schmidt, Thomas
  • Energy & Environmental Science, Vol. 3, Issue 9
  • DOI: 10.1039/b907569k

Kontrollierte Wasserstofferzeugung aus Ameisensäure-Amin-Addukten bei Raumtemperatur und direkte Nutzung in H2/O2-Brennstoffzellen
journal, May 2008

  • Loges, Björn; Boddien, Albert; Junge, Henrik
  • Angewandte Chemie, Vol. 120, Issue 21
  • DOI: 10.1002/ange.200705972

Ruthenium PNN(O) Complexes: Cooperative Reactivity and Application as Catalysts for Acceptorless Dehydrogenative Coupling Reactions
journal, April 2017


Synthesis and Reactivity of New Ni, Pd, and Pt 2,6-Bis(di- tert -butylphosphinito)pyridine Pincer Complexes
journal, October 2011

  • Kundu, Sabuj; Brennessel, William W.; Jones, William D.
  • Inorganic Chemistry, Vol. 50, Issue 19
  • DOI: 10.1021/ic201102v

Formic Acid As a Hydrogen Storage Medium: Ruthenium-Catalyzed Generation of Hydrogen from Formic Acid in Emulsions
journal, December 2013

  • Czaun, Miklos; Goeppert, Alain; Kothandaraman, Jotheeswari
  • ACS Catalysis, Vol. 4, Issue 1
  • DOI: 10.1021/cs4007974

Ligand K-edge XAS, DFT, and TDDFT analysis of pincer linker variations in Rh( i ) PNP complexes: reactivity insights from electronic structure
journal, January 2016

  • Lee, Kyounghoon; Wei, Haochuan; Blake, Anastasia V.
  • Dalton Transactions, Vol. 45, Issue 24
  • DOI: 10.1039/C6DT00200E

Works referencing / citing this record:

A General, Activator-Free Palladium-Catalyzed Synthesis of Arylacetic and Benzoic Acids from Formic Acid
journal, May 2018

  • Wang, Lin; Neumann, Helfried; Beller, Matthias
  • Angewandte Chemie International Edition, Vol. 57, Issue 23
  • DOI: 10.1002/anie.201802384

Mechanistic Considerations on Homogeneously Catalyzed Formic Acid Dehydrogenation: Mechanistic Considerations on Homogeneously Catalyzed Formic Acid Dehydrogenation
journal, April 2018

  • Iglesias, Manuel; Oro, Luis A.
  • European Journal of Inorganic Chemistry, Vol. 2018, Issue 20-21
  • DOI: 10.1002/ejic.201800159

A General, Activator-Free Palladium-Catalyzed Synthesis of Arylacetic and Benzoic Acids from Formic Acid
journal, May 2018

  • Wang, Lin; Neumann, Helfried; Beller, Matthias
  • Angewandte Chemie, Vol. 130, Issue 23
  • DOI: 10.1002/ange.201802384

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.