skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Manganese Mediated Formic Acid Dehydrogenation

Abstract

A robust and rapid manganese formic acid (FA) dehydrogenation catalyst is reported. The manganese is supported by the recently developed, hybrid backbone chelate ligand tBuPNNOP (tBuPNNOP=2,6–(di–tert–butylphosphinito)(di–tert–butylphosphinamine)pyridine) (1) and the catalyst is readily prepared with MnBrCO5 to form [(tBuPNNOP)Mn(CO)2][Br] (2). Dehydrohalogenation of 2 generated the neutral five coordinate complex (tBuPNNOP)Mn(CO)2 (3). Dehydrogenation of FA by 2 and 3 was found to be highly efficient, exhibiting turnover frequencies (TOFs) exceeding 8500 h–1, rivaling many noble metal systems. The parent chelate, tBuPONOP (tBuPONOP=2,6–bis(di–tert–butylphosphinito)pyridine) or tBuPNNNP (tBuPNNNP=2,6–bis (di–tert–butylphosphinamine)pyridine), coordination complexes of Mn were synthesized, respectively affording [(tBuPONOP)Mn(CO)2][Br] (4) and [(tBuPNNNP)Mn(CO)2][Br] (5). In conclusion, FA dehydrogenation with the hybrid–ligand supported 2 exhibits superior catalysis to 4 and 5.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1532714
Alternate Identifier(s):
OSTI ID: 1548850
Report Number(s):
LA-UR-18-31831
Journal ID: ISSN 0947-6539
Grant/Contract Number:  
89233218CNA000001; 20150743PRD3; 20170685PRD3; Science Campaign 5
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry - A European Journal
Additional Journal Information:
Journal Name: Chemistry - A European Journal; Journal ID: ISSN 0947-6539
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; catalysis; dehydrogenation; formic acid; manganese; PNNOP

Citation Formats

Anderson, Nickolas H., Boncella, James M., and Tondreau, Aaron Maurice. Manganese Mediated Formic Acid Dehydrogenation. United States: N. p., 2019. Web. doi:10.1002/chem.201901177.
Anderson, Nickolas H., Boncella, James M., & Tondreau, Aaron Maurice. Manganese Mediated Formic Acid Dehydrogenation. United States. doi:10.1002/chem.201901177.
Anderson, Nickolas H., Boncella, James M., and Tondreau, Aaron Maurice. Wed . "Manganese Mediated Formic Acid Dehydrogenation". United States. doi:10.1002/chem.201901177. https://www.osti.gov/servlets/purl/1532714.
@article{osti_1532714,
title = {Manganese Mediated Formic Acid Dehydrogenation},
author = {Anderson, Nickolas H. and Boncella, James M. and Tondreau, Aaron Maurice},
abstractNote = {A robust and rapid manganese formic acid (FA) dehydrogenation catalyst is reported. The manganese is supported by the recently developed, hybrid backbone chelate ligand tBuPNNOP (tBuPNNOP=2,6–(di–tert–butylphosphinito)(di–tert–butylphosphinamine)pyridine) (1) and the catalyst is readily prepared with MnBrCO5 to form [(tBuPNNOP)Mn(CO)2][Br] (2). Dehydrohalogenation of 2 generated the neutral five coordinate complex (tBuPNNOP)Mn(CO)2 (3). Dehydrogenation of FA by 2 and 3 was found to be highly efficient, exhibiting turnover frequencies (TOFs) exceeding 8500 h–1, rivaling many noble metal systems. The parent chelate, tBuPONOP (tBuPONOP=2,6–bis(di–tert–butylphosphinito)pyridine) or tBuPNNNP (tBuPNNNP=2,6–bis (di–tert–butylphosphinamine)pyridine), coordination complexes of Mn were synthesized, respectively affording [(tBuPONOP)Mn(CO)2][Br] (4) and [(tBuPNNNP)Mn(CO)2][Br] (5). In conclusion, FA dehydrogenation with the hybrid–ligand supported 2 exhibits superior catalysis to 4 and 5.},
doi = {10.1002/chem.201901177},
journal = {Chemistry - A European Journal},
number = ,
volume = ,
place = {United States},
year = {2019},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst
journal, July 2014

  • Bielinski, Elizabeth A.; Lagaditis, Paraskevi O.; Zhang, Yuanyuan
  • Journal of the American Chemical Society, Vol. 136, Issue 29
  • DOI: 10.1021/ja505241x

Synthesis and Structure of Six-Coordinate Iron Borohydride Complexes Supported by PNP Ligands
journal, December 2013

  • Koehne, Ingo; Schmeier, Timothy J.; Bielinski, Elizabeth A.
  • Inorganic Chemistry, Vol. 53, Issue 4
  • DOI: 10.1021/ic402762v

Well-Defined Iron Catalysts for the Acceptorless Reversible Dehydrogenation-Hydrogenation of Alcohols and Ketones
journal, October 2014

  • Chakraborty, Sumit; Lagaditis, Paraskevi O.; Förster, Moritz
  • ACS Catalysis, Vol. 4, Issue 11
  • DOI: 10.1021/cs5009656

Selective Formic Acid Dehydrogenation Catalyzed by Fe-PNP Pincer Complexes Based on the 2,6-Diaminopyridine Scaffold
journal, September 2016


Iron-Catalyzed Hydrogen Production from Formic Acid
journal, July 2010

  • Boddien, Albert; Loges, Björn; Gärtner, Felix
  • Journal of the American Chemical Society, Vol. 132, Issue 26
  • DOI: 10.1021/ja100925n

Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst
journal, September 2011


Efficient Hydrogen Liberation from Formic Acid Catalyzed by a Well-Defined Iron Pincer Complex under Mild Conditions
journal, May 2013

  • Zell, Thomas; Butschke, Burkhard; Ben-David, Yehoshoa
  • Chemistry - A European Journal, Vol. 19, Issue 25
  • DOI: 10.1002/chem.201301383

Manganese-Catalyzed N-Formylation of Amines by Methanol Liberating H 2 : A Catalytic and Mechanistic Study
journal, March 2017

  • Chakraborty, Subrata; Gellrich, Urs; Diskin-Posner, Yael
  • Angewandte Chemie International Edition, Vol. 56, Issue 15
  • DOI: 10.1002/anie.201700681

Manganese-Catalyzed N-Formylation of Amines by Methanol Liberating H 2 : A Catalytic and Mechanistic Study
journal, March 2017

  • Chakraborty, Subrata; Gellrich, Urs; Diskin-Posner, Yael
  • Angewandte Chemie, Vol. 129, Issue 15
  • DOI: 10.1002/ange.201700681

Newly designed manganese and cobalt complexes with pendant amines for the hydrogenation of CO 2 to methanol: a DFT study
journal, January 2017

  • Chen, Xiangyang; Ge, Hongyu; Yang, Xinzheng
  • Catalysis Science & Technology, Vol. 7, Issue 2
  • DOI: 10.1039/C6CY01551D

Efficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese–PNN pincer complex
journal, January 2017

  • Papa, Veronica; Cabrero-Antonino, Jose R.; Alberico, Elisabetta
  • Chemical Science, Vol. 8, Issue 5
  • DOI: 10.1039/C7SC00138J

Non-Pincer-Type Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters
journal, April 2017

  • van Putten, Robbert; Uslamin, Evgeny A.; Garbe, Marcel
  • Angewandte Chemie International Edition, Vol. 56, Issue 26
  • DOI: 10.1002/anie.201701365

Non-Pincer-Type Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters
journal, April 2017

  • van Putten, Robbert; Uslamin, Evgeny A.; Garbe, Marcel
  • Angewandte Chemie, Vol. 129, Issue 26
  • DOI: 10.1002/ange.201701365

Manganese-catalyzed allylation via sequential C–H and C–C/C–Het bond activation
journal, January 2017

  • Lu, Qingquan; Klauck, Felix J. R.; Glorius, Frank
  • Chemical Science, Vol. 8, Issue 5
  • DOI: 10.1039/C7SC00230K

Highly Efficient and Robust Photocatalytic Systems for CO 2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts
journal, November 2018

  • Takeda, Hiroyuki; Kamiyama, Hiroko; Okamoto, Kouhei
  • Journal of the American Chemical Society, Vol. 140, Issue 49
  • DOI: 10.1021/jacs.8b10619

Mechanism of the Manganese-Pincer-Catalyzed Acceptorless Dehydrogenative Coupling of Nitriles and Alcohols
journal, January 2019

  • Luque-Urrutia, Jesús A.; Solà, Miquel; Milstein, David
  • Journal of the American Chemical Society, Vol. 141, Issue 6
  • DOI: 10.1021/jacs.8b11308

Mechanism of Coupling of Alcohols and Amines To Generate Aldimines and H 2 by a Pincer Manganese Catalyst
journal, January 2019

  • Masdemont, Judit; Luque-Urrutia, Jesús A.; Gimferrer, Martí
  • ACS Catalysis, Vol. 9, Issue 3
  • DOI: 10.1021/acscatal.8b04175

Homogeneous Catalysis by Cobalt and Manganese Pincer Complexes
journal, October 2018


Reversible 1,2-Addition of Water To Form a Nucleophilic Mn(I) Hydroxide Complex: A Thermodynamic and Reactivity Study
journal, September 2017


A general and efficient Mn-catalyzed acceptorless dehydrogenative coupling of alcohols with hydroxides into carboxylates
journal, January 2018

  • Shao, Zhihui; Wang, Yujie; Liu, Yaqian
  • Organic Chemistry Frontiers, Vol. 5, Issue 8
  • DOI: 10.1039/C8QO00023A

A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol
journal, December 2016

  • Andérez-Fernández, María; Vogt, Lydia K.; Fischer, Steffen
  • Angewandte Chemie International Edition, Vol. 56, Issue 2
  • DOI: 10.1002/anie.201610182

A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol
journal, December 2016

  • Andérez-Fernández, María; Vogt, Lydia K.; Fischer, Steffen
  • Angewandte Chemie, Vol. 129, Issue 2
  • DOI: 10.1002/ange.201610182

A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst
journal, May 2008

  • Fellay, Céline; Dyson, Paul J.; Laurenczy, Gábor
  • Angewandte Chemie International Edition, Vol. 47, Issue 21, p. 3966-3968
  • DOI: 10.1002/anie.200800320

A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst
journal, May 2008

  • Fellay, Céline; Dyson, Paul J.; Laurenczy, Gábor
  • Angewandte Chemie, Vol. 120, Issue 21
  • DOI: 10.1002/ange.200800320

Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage?
journal, January 2010

  • Enthaler, Stephan; von Langermann, Jan; Schmidt, Thomas
  • Energy & Environmental Science, Vol. 3, Issue 9
  • DOI: 10.1039/b907569k

Catalytic Generation of Hydrogen from Formic acid and its Derivatives: Useful Hydrogen Storage Materials
journal, May 2010


Formic Acid as a Hydrogen Energy Carrier
journal, December 2016


Selective Formic Acid Decomposition for High-Pressure Hydrogen Generation: A Mechanistic Study
journal, February 2009

  • Fellay, Céline; Yan, Ning; Dyson, Paul J.
  • Chemistry - A European Journal, Vol. 15, Issue 15
  • DOI: 10.1002/chem.200801824

Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N ′-Diimine Ligand
journal, December 2016


Simple Continuous High-Pressure Hydrogen Production and Separation System from Formic Acid under Mild Temperatures
journal, December 2015


Sequential hydrogen production system from formic acid and H 2 /CO 2 separation under high-pressure conditions
journal, January 2018

  • Iguchi, Masayuki; Chatterjee, Maya; Onishi, Naoya
  • Sustainable Energy & Fuels, Vol. 2, Issue 8
  • DOI: 10.1039/C8SE00087E

Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures
journal, March 2012

  • Hull, Jonathan F.; Himeda, Yuichiro; Wang, Wan-Hui
  • Nature Chemistry, Vol. 4, Issue 5, p. 383-388
  • DOI: 10.1038/nchem.1295

An efficient binuclear catalyst for decomposition of formic acid
journal, January 1998

  • Gao, Yuan; Kuncheria, Joshi; Puddephatt, Richard J.
  • Chemical Communications, Issue 21
  • DOI: 10.1039/a805789c

The interconversion of formic acid and hydrogen/carbon dioxide using a binuclear ruthenium complex catalyst
journal, January 2000

  • Gao, Yuan; Kuncheria, Joshi K.; Jenkins, Hilary A.
  • Journal of the Chemical Society, Dalton Transactions, Issue 18
  • DOI: 10.1039/b004234j

Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H 2 /O 2 Fuel Cells
journal, May 2008

  • Loges, Björn; Boddien, Albert; Junge, Henrik
  • Angewandte Chemie International Edition, Vol. 47, Issue 21
  • DOI: 10.1002/anie.200705972

Kontrollierte Wasserstofferzeugung aus Ameisensäure-Amin-Addukten bei Raumtemperatur und direkte Nutzung in H2/O2-Brennstoffzellen
journal, May 2008

  • Loges, Björn; Boddien, Albert; Junge, Henrik
  • Angewandte Chemie, Vol. 120, Issue 21
  • DOI: 10.1002/ange.200705972

Hydrogen Generation at Ambient Conditions: Application in Fuel Cells
journal, September 2008


Continuous Hydrogen Generation from Formic Acid: Highly Active and Stable Ruthenium Catalysts
journal, October 2009

  • Boddien, Albert; Loges, Björn; Junge, Henrik
  • Advanced Synthesis & Catalysis, Vol. 351, Issue 14-15
  • DOI: 10.1002/adsc.200900431

The impact of Metal–Ligand Cooperation in Hydrogenation of Carbon Dioxide Catalyzed by Ruthenium PNP Pincer
journal, October 2013

  • Filonenko, Georgy A.; Conley, Matthew P.; Copéret, Christophe
  • ACS Catalysis, Vol. 3, Issue 11
  • DOI: 10.1021/cs4006869

Formic acid dehydrogenation catalysed by ruthenium complexes bearing the tripodal ligands triphos and NP 3
journal, January 2013

  • Mellone, Irene; Peruzzini, Maurizio; Rosi, Luca
  • Dalton Trans., Vol. 42, Issue 7
  • DOI: 10.1039/C2DT32043F

Highly Efficient Reversible Hydrogenation of Carbon Dioxide to Formates Using a Ruthenium PNP-Pincer Catalyst
journal, April 2014

  • Filonenko, Georgy A.; van Putten, Robbert; Schulpen, Erik N.
  • ChemCatChem, Vol. 6, Issue 6
  • DOI: 10.1002/cctc.201402119

Formic Acid Dehydrogenation Catalysed by Tris(TPPTS) Ruthenium Species: Mechanism of the Initial “Fast” Cycle
journal, September 2014

  • Thevenon, Arnaud; Frost-Pennington, Ewan; Weijia, Gan
  • ChemCatChem, Vol. 6, Issue 11
  • DOI: 10.1002/cctc.201402410

Formic Acid As a Hydrogen Storage Medium: Ruthenium-Catalyzed Generation of Hydrogen from Formic Acid in Emulsions
journal, December 2013

  • Czaun, Miklos; Goeppert, Alain; Kothandaraman, Jotheeswari
  • ACS Catalysis, Vol. 4, Issue 1
  • DOI: 10.1021/cs4007974

Hydrogen Production by Selective Dehydrogenation of HCOOH Catalyzed by Ru-Biaryl Sulfonated Phosphines in Aqueous Solution
journal, August 2014

  • Guerriero, Antonella; Bricout, Hervé; Sordakis, Katerina
  • ACS Catalysis, Vol. 4, Issue 9
  • DOI: 10.1021/cs500655x

Efficient Disproportionation of Formic Acid to Methanol Using Molecular Ruthenium Catalysts
journal, August 2014

  • Savourey, Solène; Lefèvre, Guillaume; Berthet, Jean-Claude
  • Angewandte Chemie International Edition, Vol. 53, Issue 39
  • DOI: 10.1002/anie.201405457

Efficient Disproportionation of Formic Acid to Methanol Using Molecular Ruthenium Catalysts
journal, August 2014

  • Savourey, Solène; Lefèvre, Guillaume; Berthet, Jean-Claude
  • Angewandte Chemie, Vol. 126, Issue 39
  • DOI: 10.1002/ange.201405457

Ruthenium PNN(O) Complexes: Cooperative Reactivity and Application as Catalysts for Acceptorless Dehydrogenative Coupling Reactions
journal, April 2017


Unprecedentedly High Formic Acid Dehydrogenation Activity on an Iridium Complex with an N , N ′-Diimine Ligand in Water
journal, July 2015

  • Wang, Zhijun; Lu, Sheng-Mei; Li, Jun
  • Chemistry - A European Journal, Vol. 21, Issue 36
  • DOI: 10.1002/chem.201502086

A prolific catalyst for dehydrogenation of neat formic acid
journal, April 2016

  • Celaje, Jeff Joseph A.; Lu, Zhiyao; Kedzie, Elyse A.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11308

Reactivity of Silanes with ( t Bu PONOP)Ruthenium Dichloride: Facile Synthesis of Chloro-Silyl Ruthenium Compounds and Formic Acid Decomposition
journal, September 2017

  • Anderson, Nickolas H.; Boncella, James M.; Tondreau, Aaron M.
  • Chemistry - A European Journal, Vol. 23, Issue 55
  • DOI: 10.1002/chem.201703722

Selective Hydrogen Generation from Formic Acid with Well-Defined Complexes of Ruthenium and Phosphorus-Nitrogen PN 3 -Pincer Ligand
journal, April 2016

  • Pan, Yupeng; Pan, Cheng-Ling; Zhang, Yufan
  • Chemistry - An Asian Journal, Vol. 11, Issue 9
  • DOI: 10.1002/asia.201600169

Ligand Reactivity in Diarylamido/Bis(Phosphine) PNP Complexes of Mn(CO) 3 and Re(CO) 3
journal, October 2009

  • Radosevich, Alexander T.; Melnick, Jonathan G.; Stoian, Sebastian A.
  • Inorganic Chemistry, Vol. 48, Issue 19
  • DOI: 10.1021/ic9010218

The synthesis of PNP-supported low-spin nitro manganese(I) carbonyl complexes
journal, September 2016


Highly Efficient Base-Free Dehydrogenation of Formic Acid at Low Temperature
journal, August 2018

  • Prichatz, Christoph; Trincado, Monica; Tan, Lilin
  • ChemSusChem, Vol. 11, Issue 18
  • DOI: 10.1002/cssc.201801072

Reusable Homogeneous Catalytic System for Hydrogen Production from Methanol and Water
journal, July 2014

  • Hu, Peng; Diskin-Posner, Yael; Ben-David, Yehoshoa
  • ACS Catalysis, Vol. 4, Issue 8
  • DOI: 10.1021/cs500937f