DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

Abstract

Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, Pbeam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities and results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.

Authors:
 [1];  [2];  [3]; ORCiD logo [3];  [4];  [5];  [3]; ORCiD logo [6];  [5];  [7];  [8]; ORCiD logo [3];  [3]; ORCiD logo [6]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [9]; ORCiD logo [2];  [3]; ORCiD logo [9] more »;  [7];  [3] « less
  1. Univ. of Texas, Austin, TX (United States)
  2. Oak Ridge Associated Univ., Oak Ridge, TN (United States)
  3. General Atomics, San Diego, CA (United States)
  4. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  5. Univ. of California Irvine, Irvine, CA (United States)
  6. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  7. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  8. Univ. of Wisconsin-Madison, Madison, WI (United States)
  9. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
General Atomics, San Diego, CA (United States); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI Identifier:
1435647
Alternate Identifier(s):
OSTI ID: 1434191; OSTI ID: 1497981; OSTI ID: 1648938
Report Number(s):
LLNL-JRNL-758950
Journal ID: ISSN 1070-664X; TRN: US1900079
Grant/Contract Number:  
FC02-04ER54698; AO52-07NA27344; AC02-09CH11466; FG02-94ER54235; FG02-08ER54999
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 5; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Physics - Plasma physics

Citation Formats

Austin, Max E., Bardoczi, Laszlo, Collins, Cami S., Crowley, B., Davis, E., Du, X., Ferron, J., Grierson, Brian A., Heidbrink, William W., Holcomb, Christopher T., McKee, G. R., Pawley, C., Petty, C. C., Podesta, M., Rauch, J., Scoville, J. T., Spong, D. A., Thome, K. E., Van Zeeland, M. A., Varela, J., Victor, B., and Pace, D. C. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks. United States: N. p., 2018. Web. doi:10.1063/1.5016160.
Austin, Max E., Bardoczi, Laszlo, Collins, Cami S., Crowley, B., Davis, E., Du, X., Ferron, J., Grierson, Brian A., Heidbrink, William W., Holcomb, Christopher T., McKee, G. R., Pawley, C., Petty, C. C., Podesta, M., Rauch, J., Scoville, J. T., Spong, D. A., Thome, K. E., Van Zeeland, M. A., Varela, J., Victor, B., & Pace, D. C. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks. United States. https://doi.org/10.1063/1.5016160
Austin, Max E., Bardoczi, Laszlo, Collins, Cami S., Crowley, B., Davis, E., Du, X., Ferron, J., Grierson, Brian A., Heidbrink, William W., Holcomb, Christopher T., McKee, G. R., Pawley, C., Petty, C. C., Podesta, M., Rauch, J., Scoville, J. T., Spong, D. A., Thome, K. E., Van Zeeland, M. A., Varela, J., Victor, B., and Pace, D. C. Fri . "Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks". United States. https://doi.org/10.1063/1.5016160. https://www.osti.gov/servlets/purl/1435647.
@article{osti_1435647,
title = {Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks},
author = {Austin, Max E. and Bardoczi, Laszlo and Collins, Cami S. and Crowley, B. and Davis, E. and Du, X. and Ferron, J. and Grierson, Brian A. and Heidbrink, William W. and Holcomb, Christopher T. and McKee, G. R. and Pawley, C. and Petty, C. C. and Podesta, M. and Rauch, J. and Scoville, J. T. and Spong, D. A. and Thome, K. E. and Van Zeeland, M. A. and Varela, J. and Victor, B. and Pace, D. C.},
abstractNote = {Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, Pbeam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities and results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.},
doi = {10.1063/1.5016160},
journal = {Physics of Plasmas},
number = 5,
volume = 25,
place = {United States},
year = {Fri Apr 20 00:00:00 EDT 2018},
month = {Fri Apr 20 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Mitigation of Alfvén Activity in a Tokamak by Externally Applied Static 3D Fields
journal, June 2013


Integrated modeling applications for tokamak experiments with OMFIT
journal, July 2015


The beam emission spectroscopy diagnostic on the DIII-D tokamak
journal, January 1999

  • McKee, G.; Ashley, R.; Durst, R.
  • Review of Scientific Instruments, Vol. 70, Issue 1
  • DOI: 10.1063/1.1149416

Mitigation of NBI-driven Alfvén eigenmodes by electron cyclotron heating in the TJ-II stellarator
journal, July 2013


Electron cyclotron emission radiometer upgrade on the DIII-D tokamak
journal, March 2003

  • Austin, M. E.; Lohr, J.
  • Review of Scientific Instruments, Vol. 74, Issue 3
  • DOI: 10.1063/1.1530387

Suprathermal ion transport in simple magnetized torus configurations
journal, June 2012

  • Gustafson, K.; Ricci, P.; Bovet, A.
  • Physics of Plasmas, Vol. 19, Issue 6
  • DOI: 10.1063/1.4725420

Alfvén eigenmode stability and fast ion loss in DIII-D and ITER reversed magnetic shear plasmas
journal, September 2012


Assessment of the plasma start-up in Wendelstein 7-X with neutral beam injection
journal, February 2015


Initial measurements of the DIII-D off-axis neutral beams
journal, September 2012


Effects of MHD instabilities on neutral beam current drive
journal, April 2015


Phase-space dependent critical gradient behavior of fast-ion transport due to Alfvén eigenmodes
journal, June 2017


Energetic ion transport by microturbulence is insignificant in tokamaks
journal, May 2013

  • Austin, M. E.; Bass, E. M.; Budny, R. V.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803930

Advances in understanding quiescent H-mode plasmas in DIII-D
journal, May 2005

  • Burrell, K. H.; West, W. P.; Doyle, E. J.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1894745

Anomalous fast ion losses at high β on the tokamak fusion test reactor
journal, March 2015

  • Fredrickson, E. D.; Bell, M. G.; Budny, R. V.
  • Physics of Plasmas, Vol. 22, Issue 3
  • DOI: 10.1063/1.4907656

Analysis of Alfvén eigenmode destabilization by energetic particles in Large Helical Device using a Landau-closure model
journal, March 2017


Convective beam ion losses due to Alfvén eigenmodes in DIII-D reversed-shear plasmas
journal, April 2011


TRANSP modelling of total and local neutron emission on MAST
journal, January 2015


Experimental investigation and validation of neutral beam current drive for ITER through ITPA Joint Experiments
journal, July 2011


Advanced control of neutral beam injected power in DIII-D
journal, November 2017


Fiber optic two-color vibration compensated interferometer for plasma density measurements
journal, October 2006

  • Van Zeeland, M. A.; Boivin, R. L.; Carlstrom, T. N.
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2336437

Quantification of the impact of large and small-scale instabilities on the fast-ion confinement in ASDEX Upgrade
journal, November 2014


Modeling and experimental studies of the DIII-D neutral beam system
journal, October 2015


The behaviour of fast ions in tokamak experiments
journal, April 1994


Excitation of Alfvén eigenmodes by low energy beam ions in the DIII-D and JET tokamaks
journal, May 2008

  • Nazikian, R.; Gorelenkov, N. N.; Alper, B.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2839286

Major minority: energetic particles in fusion plasmas
journal, March 2011


Suppression of Alfvén Modes on the National Spherical Torus Experiment Upgrade with Outboard Beam Injection
journal, June 2017


On neutral-beam injection counter to the plasma current
journal, November 2005

  • Helander, P.; Akers, R. J.; Eriksson, L. -G.
  • Physics of Plasmas, Vol. 12, Issue 11
  • DOI: 10.1063/1.2121287

Multichord spectroscopy of the DIII‐D divertor region
journal, October 1992

  • Brooks, N. H.; Howald, A.; Klepper, K.
  • Review of Scientific Instruments, Vol. 63, Issue 10
  • DOI: 10.1063/1.1143469

Computation of Alfvèn eigenmode stability and saturation through a reduced fast ion transport model in the TRANSP tokamak transport code
journal, July 2017

  • Podestà, M.; Gorelenkova, M.; Gorelenkov, N. N.
  • Plasma Physics and Controlled Fusion, Vol. 59, Issue 9
  • DOI: 10.1088/1361-6587/aa7977

Basic physics of Alfvén instabilities driven by energetic particles in toroidally confined plasmas
journal, May 2008


Turbulent transport of fast ions in the Large Plasma Device
journal, September 2010

  • Zhou, Shu; Heidbrink, W. W.; Boehmer, H.
  • Physics of Plasmas, Vol. 17, Issue 9
  • DOI: 10.1063/1.3486532

The effects of electron cyclotron heating and current drive on toroidal Alfvén eigenmodes in tokamak plasmas
journal, November 2017

  • Sharapov, S. E.; Garcia-Munoz, M.; Van Zeeland, M. A.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 1
  • DOI: 10.1088/1361-6587/aa90ee

Observation of Critical-Gradient Behavior in Alfvén-Eigenmode-Induced Fast-Ion Transport
journal, February 2016


Convective and Diffusive Energetic Particle Losses Induced by Shear Alfvén Waves in the ASDEX Upgrade Tokamak
journal, May 2010


Energetic ions in ITER plasmas
journal, February 2015

  • Pinches, S. D.; Chapman, I. T.; Lauber, Ph. W.
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4908551

Active excitation and damping rate measurement of intermediate- n toroidal Alfvén eigenmodes in JET, C-Mod and MAST plasmas
journal, June 2010


Enhanced Localized Energetic-Ion Losses Resulting from Single-Pass Interactions with Alfvén Eigenmodes
journal, February 2013


Diverse wave-particle interactions for energetic ions that traverse Alfvén eigenmodes on their first full orbit
journal, February 2016

  • Heidbrink, W. W.; Persico, E. A. D.; Austin, M. E.
  • Physics of Plasmas, Vol. 23, Issue 2
  • DOI: 10.1063/1.4941587

Electron cyclotron heating can drastically alter reversed shear Alfvén eigenmode activity in DIII-D through finite pressure effects
journal, July 2016


Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-Da)
journal, May 2015

  • Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921152

The effect of the fast-ion profile on Alfvén eigenmode stability
journal, August 2013


Control of power, torque, and instability drive using in-shot variable neutral beam energy in tokamaks
journal, September 2016


Rotation of a Neutral Beamline to Obtain Counter-Injection on the DIII-D Tokamak
journal, October 2007


Multi-phase simulation of fast ion profile flattening due to Alfvén eigenmodes in a DIII-D experiment
journal, October 2014


Progress of long pulse and H-mode experiments in EAST
journal, September 2013


The behaviour of fast ions in tokamak experiments
journal, February 1995


Works referencing / citing this record:

Quantitative modeling of neoclassical tearing mode driven fast ion transport in integrated TRANSP simulations
journal, April 2019

  • Bardóczi, L.; Podestà, M.; Heidbrink, W. W.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 5
  • DOI: 10.1088/1361-6587/ab0f08

Subdominant modes and optimization trends of DIII-D reverse magnetic shear configurations
journal, February 2019


The effect of plasma shape and neutral beam mix on the rotation threshold for RMP-ELM suppression
journal, March 2019


Feedback control of stored energy and rotation with variable beam energy and perveance on DIII-D
journal, May 2019


Analysis of Alfven eigenmode destabilization in ITER using a Landau closure model
journal, June 2019


Analysis of Alfven Eigenmode destabilization in ITER using a Landau closure model
text, January 2019