DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of High and Low Salt Concentration in Electrolytes at Lithium–Metal Anode Surfaces

Abstract

The use of high concentration salts in electrolyte solutions of lithium-sulfur (Li-S) batteries has been shown beneficial for mitigating some effects such as polysulfide shuttle and dendrite growth at the Li metal anode. Such complex solutions have structural, dynamical, and reactivity associated issues that need to be analyzed for a better understanding of the reasons behind such beneficial effects. A passivation interfacial layer known as solid-electrolyte interphase (SEI) is generated during battery cycling as a result of electron transfer from the metal anode causing electrolyte decomposition. Here in this work, we investigate using density functional theory and ab initio molecular dynamics simulations the salt decomposition, solvation effects, interactions among intermediate products and other species, and potential components of the SEI layer as a function of chemical nature and concentration of the salt, for lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI) at 1M and 4M concentrations in dimethoxyethane. It is found that LiTFSI undergoes a less complete reduction and facilitates charge transfer from the anode, whereas LiFSI shows a more complete decomposition forming LiF as one of the main SEI products. In addition, the specific decomposition mechanisms of each salt clearly point to the initial SEI components and the potential mainmore » products derived from them. Finally, very complex networks are found among the salt and solvent molecules in their attempt to maximize Li ion solvation that is quantified through the determination of coordination numbers.« less

Authors:
 [1];  [2]; ORCiD logo [3]
  1. Texas A & M Univ., College Station, TX (United States). Department of Chemical Engineering
  2. Texas A & M Univ., College Station, TX (United States). Department of Chemical Engineering and Department of Materials Science and Engineering
  3. Texas A & M Univ., College Station, TX (United States). Department of Chemical Engineering, Department of Materials Science and Engineering and Department of Chemistry
Publication Date:
Research Org.:
Texas A & M Univ., College Station, TX (United States). Texas A & M Engineering Experiment Station
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1430634
Grant/Contract Number:  
EE0006832
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 121; Journal Issue: 1; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Camacho-Forero, Luis E., Smith, Taylor W., and Balbuena, Perla B. Effects of High and Low Salt Concentration in Electrolytes at Lithium–Metal Anode Surfaces. United States: N. p., 2016. Web. doi:10.1021/acs.jpcc.6b10774.
Camacho-Forero, Luis E., Smith, Taylor W., & Balbuena, Perla B. Effects of High and Low Salt Concentration in Electrolytes at Lithium–Metal Anode Surfaces. United States. https://doi.org/10.1021/acs.jpcc.6b10774
Camacho-Forero, Luis E., Smith, Taylor W., and Balbuena, Perla B. Fri . "Effects of High and Low Salt Concentration in Electrolytes at Lithium–Metal Anode Surfaces". United States. https://doi.org/10.1021/acs.jpcc.6b10774. https://www.osti.gov/servlets/purl/1430634.
@article{osti_1430634,
title = {Effects of High and Low Salt Concentration in Electrolytes at Lithium–Metal Anode Surfaces},
author = {Camacho-Forero, Luis E. and Smith, Taylor W. and Balbuena, Perla B.},
abstractNote = {The use of high concentration salts in electrolyte solutions of lithium-sulfur (Li-S) batteries has been shown beneficial for mitigating some effects such as polysulfide shuttle and dendrite growth at the Li metal anode. Such complex solutions have structural, dynamical, and reactivity associated issues that need to be analyzed for a better understanding of the reasons behind such beneficial effects. A passivation interfacial layer known as solid-electrolyte interphase (SEI) is generated during battery cycling as a result of electron transfer from the metal anode causing electrolyte decomposition. Here in this work, we investigate using density functional theory and ab initio molecular dynamics simulations the salt decomposition, solvation effects, interactions among intermediate products and other species, and potential components of the SEI layer as a function of chemical nature and concentration of the salt, for lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI) at 1M and 4M concentrations in dimethoxyethane. It is found that LiTFSI undergoes a less complete reduction and facilitates charge transfer from the anode, whereas LiFSI shows a more complete decomposition forming LiF as one of the main SEI products. In addition, the specific decomposition mechanisms of each salt clearly point to the initial SEI components and the potential main products derived from them. Finally, very complex networks are found among the salt and solvent molecules in their attempt to maximize Li ion solvation that is quantified through the determination of coordination numbers.},
doi = {10.1021/acs.jpcc.6b10774},
journal = {Journal of Physical Chemistry. C},
number = 1,
volume = 121,
place = {United States},
year = {Fri Dec 16 00:00:00 EST 2016},
month = {Fri Dec 16 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 119 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries
journal, January 2012

  • Thackeray, Michael M.; Wolverton, Christopher; Isaacs, Eric D.
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21892e

Thermodynamic analysis on energy densities of batteries
journal, January 2011

  • Zu, Chen-Xi; Li, Hong
  • Energy & Environmental Science, Vol. 4, Issue 8
  • DOI: 10.1039/c0ee00777c

A review of electrolytes for lithium–sulphur batteries
journal, June 2014


A Highly Reversible Lithium Metal Anode
journal, January 2014

  • Park, Min Sik; Ma, Sang Bok; Lee, Dong Joon
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep03815

Erratum: Corrigendum: Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures
journal, February 2014

  • Huang, Cheng; Xiao, Jie; Shao, Yuyan
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4343

Low Temperature Performance of Li/S Batteries
journal, January 2003

  • Mikhaylik, Yuriy V.; Akridge, James R.
  • Journal of The Electrochemical Society, Vol. 150, Issue 3
  • DOI: 10.1149/1.1545452

An Advanced Lithium-Ion Sulfur Battery for High Energy Storage
journal, June 2015

  • Agostini, Marco; Scrosati, Bruno; Hassoun, Jusef
  • Advanced Energy Materials, Vol. 5, Issue 16
  • DOI: 10.1002/aenm.201500481

Importance of Reduction and Oxidation Stability of High Voltage Electrolytes and Additives
journal, August 2016


Effects of Electrolyte Salts on the Performance of Li–O 2 Batteries
journal, February 2013

  • Nasybulin, Eduard; Xu, Wu; Engelhard, Mark H.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 6
  • DOI: 10.1021/jp311114u

Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode
journal, January 2013

  • Ding, Fei; Xu, Wu; Chen, Xilin
  • Journal of The Electrochemical Society, Vol. 160, Issue 10
  • DOI: 10.1149/2.100310jes

Investigation of Electrolyte Concentration Effects on the Performance of Lithium–Oxygen Batteries
journal, March 2016

  • Markus, Isaac M.; Jones, Gavin; García, Jeannette M.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 11
  • DOI: 10.1021/acs.jpcc.6b01474

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSI-Based Organic Electrolytes
journal, December 2014

  • Kim, Hyea; Wu, Feixiang; Lee, Jung Tae
  • Advanced Energy Materials, Vol. 5, Issue 6
  • DOI: 10.1002/aenm.201401792

Polysulfide dissolution control: the common ion effect
journal, January 2013

  • Shin, Eon Sung; Kim, Keon; Oh, Si Hyoung
  • Chem. Commun., Vol. 49, Issue 20
  • DOI: 10.1039/C2CC36986A

A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Solution-Based Processing of Graphene-Li 2 S Composite Cathodes for Lithium-Ion and Lithium-Sulfur Batteries
journal, February 2014

  • Wu, Feixiang; Lee, Jung Tae; Magasinski, Alexandre
  • Particle & Particle Systems Characterization, Vol. 31, Issue 6
  • DOI: 10.1002/ppsc.201300358

Development and costs calculation of lithium–sulfur cells with high sulfur load and binder free electrodes
journal, February 2013


Li 2 S Film Formation on Lithium Anode Surface of Li–S batteries
journal, February 2016

  • Liu, Zhixiao; Bertolini, Samuel; Balbuena, Perla B.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 7
  • DOI: 10.1021/acsami.5b11803

A Microstructurally Resolved Model for Li-S Batteries Assessing the Impact of the Cathode Design on the Discharge Performance
journal, January 2016

  • Thangavel, Vigneshwaran; Xue, Kan-Hao; Mammeri, Youcef
  • Journal of The Electrochemical Society, Vol. 163, Issue 13
  • DOI: 10.1149/2.0051614jes

Modelling transport-limited discharge capacity of lithium-sulfur cells
journal, November 2016


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Projector augmented-wave method
journal, December 1994


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Reactivity at the Lithium–Metal Anode Surface of Lithium–Sulfur Batteries
journal, November 2015

  • Camacho-Forero, Luis E.; Smith, Taylor W.; Bertolini, Samuel
  • The Journal of Physical Chemistry C, Vol. 119, Issue 48
  • DOI: 10.1021/acs.jpcc.5b08254

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
journal, September 1992


Anion Conformation of Low-Viscosity Room-Temperature Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(fluorosulfonyl) Imide
journal, November 2007

  • Fujii, Kenta; Seki, Shiro; Fukuda, Shuhei
  • The Journal of Physical Chemistry B, Vol. 111, Issue 44
  • DOI: 10.1021/jp074325e

Potential Energy Landscape of Bis(fluorosulfonyl)amide
journal, August 2008

  • Canongia Lopes, José N.; Shimizu, Karina; Pádua, Agílio A. H.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 31
  • DOI: 10.1021/jp803309c

Oxidative-Stability Enhancement and Charge Transport Mechanism in Glyme–Lithium Salt Equimolar Complexes
journal, August 2011

  • Yoshida, Kazuki; Nakamura, Megumi; Kazue, Yuichi
  • Journal of the American Chemical Society, Vol. 133, Issue 33, p. 13121-13129
  • DOI: 10.1021/ja203983r

Electrolyte Solvation and Ionic Association: V. Acetonitrile-Lithium Bis(fluorosulfonyl)imide (LiFSI) Mixtures
journal, January 2014

  • Han, Sang-Don; Borodin, Oleg; Seo, Daniel M.
  • Journal of The Electrochemical Society, Vol. 161, Issue 14
  • DOI: 10.1149/2.0101414jes

A grid-based Bader analysis algorithm without lattice bias
journal, January 2009


Improved grid-based algorithm for Bader charge allocation
journal, January 2007

  • Sanville, Edward; Kenny, Steven D.; Smith, Roger
  • Journal of Computational Chemistry, Vol. 28, Issue 5
  • DOI: 10.1002/jcc.20575

A fast and robust algorithm for Bader decomposition of charge density
journal, June 2006


Quantum Mechanical Continuum Solvation Models
journal, August 2005

  • Tomasi, Jacopo; Mennucci, Benedetta; Cammi, Roberto
  • Chemical Reviews, Vol. 105, Issue 8
  • DOI: 10.1021/cr9904009

VMD: Visual molecular dynamics
journal, February 1996


Study of the Initial Stage of Solid Electrolyte Interphase Formation upon Chemical Reaction of Lithium Metal and N -Methyl- N -Propyl-Pyrrolidinium-Bis(Fluorosulfonyl)Imide
journal, September 2012

  • Budi, Akin; Basile, Andrew; Opletal, George
  • The Journal of Physical Chemistry C, Vol. 116, Issue 37
  • DOI: 10.1021/jp304581g

Stable silicon-ionic liquid interface for next-generation lithium-ion batteries
journal, February 2015

  • Piper, Daniela Molina; Evans, Tyler; Leung, Kevin
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7230

Why Bis(fluorosulfonyl)imide Is a “Magic Anion” for Electrochemistry
journal, August 2014

  • Shkrob, Ilya A.; Marin, Timothy W.; Zhu, Ye
  • The Journal of Physical Chemistry C, Vol. 118, Issue 34
  • DOI: 10.1021/jp506567p

Sacrificial Anion Reduction Mechanism for Electrochemical Stability Improvement in Highly Concentrated Li-Salt Electrolyte
journal, June 2014

  • Sodeyama, Keitaro; Yamada, Yuki; Aikawa, Koharu
  • The Journal of Physical Chemistry C, Vol. 118, Issue 26, p. 14091-14097
  • DOI: 10.1021/jp501178n

Lithium salts for advanced lithium batteries: Li–metal, Li–O 2 , and Li–S
journal, January 2015

  • Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik
  • Energy & Environmental Science, Vol. 8, Issue 7
  • DOI: 10.1039/C5EE01215E

Effect of the Electrolyte Composition on SEI Reactions at Si Anodes of Li-Ion Batteries
journal, March 2015

  • Martinez de la Hoz, Julibeth M.; Soto, Fernando A.; Balbuena, Perla B.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 13
  • DOI: 10.1021/acs.jpcc.5b01228

Lithium Ion Solvation in Room-Temperature Ionic Liquids Involving Bis(trifluoromethanesulfonyl) Imide Anion Studied by Raman Spectroscopy and DFT Calculations
journal, November 2007

  • Umebayashi, Yasuhiro; Mitsugi, Takushi; Fukuda, Shuhei
  • The Journal of Physical Chemistry B, Vol. 111, Issue 45
  • DOI: 10.1021/jp076869m

Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes
journal, January 2015

  • Yoon, Hyungook; Best, Adam S.; Forsyth, Maria
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 6
  • DOI: 10.1039/C4CP05333H

Enhanced Cycling Stability of Rechargeable Li-O 2 Batteries Using High-Concentration Electrolytes
journal, December 2015


Pulse-Gradient Spin-Echo 1 H, 7 Li, and 19 F NMR Diffusion and Ionic Conductivity Measurements of 14 Organic Electrolytes Containing LiN(SO 2 CF 3 ) 2
journal, January 1999

  • Hayamizu, Kikuko; Aihara, Yuichi; Arai, Shigemasa
  • The Journal of Physical Chemistry B, Vol. 103, Issue 3
  • DOI: 10.1021/jp9825664

Ion and solvent diffusion and ion conduction of PC-DEC and PC-DME binary solvent electrolytes of LiN(SO2CF3)2
journal, August 2004


Works referencing / citing this record:

Anion effects on the solvation structure and properties of imide lithium salt-based electrolytes
journal, January 2019


Carbon Nanosponge Cathode Materials and Graphite-Protected Etched Al Foil Anode for Dual-Ion Hybrid Supercapacitor
journal, January 2018

  • Zhou, Haitao; Liu, Menghao; Li, Yinglong
  • Journal of The Electrochemical Society, Vol. 165, Issue 13
  • DOI: 10.1149/2.0681813jes

Mesoscale Physicochemical Interactions in Lithium–Sulfur Batteries: Progress and Perspective
journal, October 2017

  • Liu, Zhixiao; Mistry, Aashutosh; Mukherjee, Partha P.
  • Journal of Electrochemical Energy Conversion and Storage, Vol. 15, Issue 1
  • DOI: 10.1115/1.4037785

Rational Design of a Dual-Function Hybrid Cathode Substrate for Lithium-Sulfur Batteries
journal, June 2018

  • Luo, Liu; Chung, Sheng-Heng; Manthiram, Arumugam
  • Advanced Energy Materials, Vol. 8, Issue 24
  • DOI: 10.1002/aenm.201801014

An ab initio study for probing iodization reactions on metallic anode surfaces of Li–I 2 batteries
journal, January 2018

  • Liu, Zhixiao; Hu, Wangyu; Gao, Fei
  • Journal of Materials Chemistry A, Vol. 6, Issue 17
  • DOI: 10.1039/c8ta00356d

Chemically soft solid electrolyte interphase forming additives for lithium-ion batteries
journal, January 2018

  • Jankowski, Piotr; Poterała, Marcin; Lindahl, Niklas
  • Journal of Materials Chemistry A, Vol. 6, Issue 45
  • DOI: 10.1039/c8ta07936f

Building Better Batteries in the Solid State: A Review
journal, November 2019

  • Mauger, Alain; Julien, Christian M.; Paolella, Andrea
  • Materials, Vol. 12, Issue 23, p. 3892
  • DOI: 10.3390/ma12233892

The Electrochemical Performance of Silicon Nanoparticles in Concentrated Electrolyte
journal, May 2018


Developing High-Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress
journal, March 2018


Li 2 S growth on graphene: Impact on the electrochemical performance of Li-S batteries
journal, January 2020

  • Longo, Roberto C.; Camacho-Forero, Luis E.; Balbuena, Perla B.
  • The Journal of Chemical Physics, Vol. 152, Issue 1
  • DOI: 10.1063/1.5135304

Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries
journal, March 2018


An Aggregate Cluster-Dispersed Electrolyte Guides the Uniform Nucleation and Growth of Lithium at Lithium Metal Anodes
journal, November 2018