DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High Voltage Operation of Ni‐Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases

Abstract

Abstract The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant challenge to operate LMBs with high voltage cathodes under high rate conditions. In this work, an LMB using a nickel‐rich layered cathode of LiNi 0.76 Mn 0.14 Co 0.10 O 2 (NMC76) and an optimized electrolyte [0.6 m lithium bis(trifluoromethanesulfonyl)imide + 0.4 m lithium bis(oxalato)borate + 0.05 m LiPF 6 dissolved in ethylene carbonate and ethyl methyl carbonate (4:6 by weight)] demonstrates excellent stability at a high charge cutoff voltage of 4.5 V. Remarkably, these Li||NMC76 cells can deliver a high discharge capacity of >220 mA h g −1 (846 W h kg −1 ) and retain more than 80% capacity after 1000 cycles at high charge/discharge current rates of 2C/2C (1C = 200 mA g −1 ). This excellent electrochemical performance can be attributed to the greatly enhanced structural/interfacial stability of both the Ni‐rich NMC76 cathode material and the Li metal anode using the optimized electrolyte.

Authors:
 [1];  [2];  [3];  [2];  [2];  [2];  [3];  [3];  [2];  [4]; ORCiD logo [2]
  1. Energy and Environment Directorate Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99354 USA, School of Energy Research Xiamen University Xiamen Fujian 361005 China
  2. Energy and Environment Directorate Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99354 USA
  3. Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory 3335 Innovation Boulevard Richland WA 99354 USA
  4. School of Energy Research Xiamen University Xiamen Fujian 361005 China, State Key Lab of Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1430586
Grant/Contract Number:  
DE‐AC02‐05CH11231
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Name: Advanced Energy Materials Journal Volume: 8 Journal Issue: 19; Journal ID: ISSN 1614-6832
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Zhao, Wengao, Zheng, Jianming, Zou, Lianfeng, Jia, Haiping, Liu, Bin, Wang, Hui, Engelhard, Mark H., Wang, Chongmin, Xu, Wu, Yang, Yong, and Zhang, Ji‐Guang. High Voltage Operation of Ni‐Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases. Germany: N. p., 2018. Web. doi:10.1002/aenm.201800297.
Zhao, Wengao, Zheng, Jianming, Zou, Lianfeng, Jia, Haiping, Liu, Bin, Wang, Hui, Engelhard, Mark H., Wang, Chongmin, Xu, Wu, Yang, Yong, & Zhang, Ji‐Guang. High Voltage Operation of Ni‐Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases. Germany. https://doi.org/10.1002/aenm.201800297
Zhao, Wengao, Zheng, Jianming, Zou, Lianfeng, Jia, Haiping, Liu, Bin, Wang, Hui, Engelhard, Mark H., Wang, Chongmin, Xu, Wu, Yang, Yong, and Zhang, Ji‐Guang. Fri . "High Voltage Operation of Ni‐Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases". Germany. https://doi.org/10.1002/aenm.201800297.
@article{osti_1430586,
title = {High Voltage Operation of Ni‐Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases},
author = {Zhao, Wengao and Zheng, Jianming and Zou, Lianfeng and Jia, Haiping and Liu, Bin and Wang, Hui and Engelhard, Mark H. and Wang, Chongmin and Xu, Wu and Yang, Yong and Zhang, Ji‐Guang},
abstractNote = {Abstract The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant challenge to operate LMBs with high voltage cathodes under high rate conditions. In this work, an LMB using a nickel‐rich layered cathode of LiNi 0.76 Mn 0.14 Co 0.10 O 2 (NMC76) and an optimized electrolyte [0.6 m lithium bis(trifluoromethanesulfonyl)imide + 0.4 m lithium bis(oxalato)borate + 0.05 m LiPF 6 dissolved in ethylene carbonate and ethyl methyl carbonate (4:6 by weight)] demonstrates excellent stability at a high charge cutoff voltage of 4.5 V. Remarkably, these Li||NMC76 cells can deliver a high discharge capacity of >220 mA h g −1 (846 W h kg −1 ) and retain more than 80% capacity after 1000 cycles at high charge/discharge current rates of 2C/2C (1C = 200 mA g −1 ). This excellent electrochemical performance can be attributed to the greatly enhanced structural/interfacial stability of both the Ni‐rich NMC76 cathode material and the Li metal anode using the optimized electrolyte.},
doi = {10.1002/aenm.201800297},
journal = {Advanced Energy Materials},
number = 19,
volume = 8,
place = {Germany},
year = {Fri Mar 30 00:00:00 EDT 2018},
month = {Fri Mar 30 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/aenm.201800297

Citation Metrics:
Cited by: 247 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries
journal, January 2018


Flexible Metal-Air Batteries: Progress, Challenges, and Perspectives
journal, November 2017


Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperatures
journal, January 2014

  • Chen, Xilin; Xu, Wu; Engelhard, Mark H.
  • Journal of Materials Chemistry A, Vol. 2, Issue 7
  • DOI: 10.1039/c3ta13043f

Review—Superconcentrated Electrolytes for Lithium Batteries
journal, January 2015

  • Yamada, Yuki; Yamada, Atsuo
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0041514jes

Review—Development of Advanced Rechargeable Batteries: A Continuous Challenge in the Choice of Suitable Electrolyte Solutions
journal, January 2015

  • Erickson, Evan M.; Markevich, Elena; Salitra, Gregory
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0051514jes

Li–air batteries: Decouple to stabilize
journal, August 2017


Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

A New High Power LiNi 0.81 Co 0.1 Al 0.09 O 2 Cathode Material for Lithium-Ion Batteries
journal, April 2014


Li‐ and Mn‐Rich Cathode Materials: Challenges to Commercialization
journal, December 2016

  • Zheng, Jianming; Myeong, Seungjun; Cho, Woongrae
  • Advanced Energy Materials, Vol. 7, Issue 6
  • DOI: 10.1002/aenm.201601284

Nanoengineered Ultralight and Robust All-Metal Cathode for High-Capacity, Stable Lithium–Oxygen Batteries
journal, May 2017


The roles of oxygen non-stoichiometry on the electrochemical properties of oxide-based cathode materials
journal, October 2016


Reversible Nitrogen Fixation Based on a Rechargeable Lithium-Nitrogen Battery for Energy Storage
journal, April 2017


Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High-Concentration Electrolyte Layer
journal, February 2016

  • Zheng, Jianming; Yan, Pengfei; Mei, Donghai
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201502151

Lewis Acid–Base Interactions between Polysulfides and Metal Organic Framework in Lithium Sulfur Batteries
journal, April 2014

  • Zheng, Jianming; Tian, Jian; Wu, Dangxin
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl404721h

Polymer Electrolytes: Ionic Transport Mechanisms and Relaxation Coupling
journal, March 2000

  • Ratner, Mark A.; Johansson, Patrik; Shriver, Duward F.
  • MRS Bulletin, Vol. 25, Issue 3
  • DOI: 10.1557/mrs2000.16

Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries
journal, May 2014

  • Khurana, Rachna; Schaefer, Jennifer L.; Archer, Lynden A.
  • Journal of the American Chemical Society, Vol. 136, Issue 20
  • DOI: 10.1021/ja502133j

Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation
journal, August 2013


SiO 2 Hollow Nanosphere-Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life
journal, January 2016

  • Zhou, Dong; Liu, Ruliang; He, Yan-Bing
  • Advanced Energy Materials, Vol. 6, Issue 7
  • DOI: 10.1002/aenm.201502214

Extending the High-Voltage Capacity of LiCoO 2 Cathode by Direct Coating of the Composite Electrode with Li 2 CO 3 via Magnetron Sputtering
journal, December 2015


The Application of Atomic Force Microscopy for the Study of Li Deposition Processes
journal, January 1996

  • Aurbach, Doron
  • Journal of The Electrochemical Society, Vol. 143, Issue 11
  • DOI: 10.1149/1.1837248

Ion transport in polycarbonate based solid polymer electrolytes: experimental and computational investigations
journal, January 2016

  • Sun, Bing; Mindemark, Jonas; V. Morozov, Evgeny
  • Phys. Chem. Chem. Phys., Vol. 18, Issue 14
  • DOI: 10.1039/C6CP00757K

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Stabilization of Li Metal Anode in DMSO-Based Electrolytes via Optimization of Salt-Solvent Coordination for Li-O 2 Batteries
journal, March 2017


Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016

  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

High-Performance Integrated Self-Package Flexible Li-O 2 Battery Based on Stable Composite Anode and Flexible Gas Diffusion Layer
journal, April 2017


Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries
journal, January 2017

  • Zhang, Xue-Qiang; Cheng, Xin-Bing; Chen, Xiang
  • Advanced Functional Materials, Vol. 27, Issue 10
  • DOI: 10.1002/adfm.201605989

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Effect of Ambient Storage on the Degradation of Ni-Rich Positive Electrode Materials (NMC811) for Li-Ion Batteries
journal, January 2018

  • Jung, Roland; Morasch, Robert; Karayaylali, Pinar
  • Journal of The Electrochemical Society, Vol. 165, Issue 2
  • DOI: 10.1149/2.0401802jes

History, Evolution, and Future Status of Energy Storage
journal, May 2012


A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
journal, December 2015

  • Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10101

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth
journal, January 2016

  • Zhang, Rui; Cheng, Xin-Bing; Zhao, Chen-Zi
  • Advanced Materials, Vol. 28, Issue 11
  • DOI: 10.1002/adma.201504117

Insight into the interaction between layered lithium-rich oxide and additive-containing electrolyte
journal, February 2017


Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Development of novel lithium borate additives for designed surface modification of high voltage LiNi 0.5 Mn 1.5 O 4 cathodes
journal, January 2016

  • Xu, Mengqing; Zhou, Liu; Dong, Yingnan
  • Energy & Environmental Science, Vol. 9, Issue 4
  • DOI: 10.1039/C5EE03360H

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode
journal, January 2004

  • Ota, Hitoshi; Sakata, Yuuichi; Inoue, Atsuyoshi
  • Journal of The Electrochemical Society, Vol. 151, Issue 10
  • DOI: 10.1149/1.1785795

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362