DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Suppressing Li Dendrite Formation in Li 2 S‐P 2 S 5 Solid Electrolyte by LiI Incorporation

Abstract

Abstract Solid electrolytes have been considered as a promising approach for Li dendrite prevention because of their high mechanical strength and high Li transference number. However, recent reports indicate that Li dendrites also form in Li 2 S‐P 2 S 5 based sulfide electrolytes at current densities much lower than that in the conventional liquid electrolytes. The methods of suppressing dendrite formation in sulfide electrolytes have rarely been reported because the mechanism for the “unexpected” dendrite formation is unclear, limiting the successful utilization of high‐energy Li anode with these electrolytes. Herein, the authors demonstrate that the Li dendrite formation in Li 2 S‐P 2 S 5 glass can be effectively suppressed by tuning the composition of the solid electrolyte interphase (SEI) at the Li/electrolyte interface through incorporating LiI into the electrolyte. This approach introduces high ionic conductivity but electronic insulation of LiI in the SEI, and more importantly, improves the mobility of Li atoms, promoting the Li depositon at the interface and thus suppresses dendrite growth. It is shown that the critical current density is improved significantly after incorporating LiI into Li 2 S‐P 2 S 5 glass, reaching 3.90 mA cm −2 at 100 °C after adding 30 mol%more » LiI. Stable cycling of the Li‐Li cells for 200 h is also achieved at 1.50 mA cm −2 at 100 °C.« less

Authors:
 [1];  [1];  [1]; ORCiD logo [1]
  1. Department of Chemical and Biomolecular Engineering University of Maryland College Park MD 20740 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1425509
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Name: Advanced Energy Materials Journal Volume: 8 Journal Issue: 18; Journal ID: ISSN 1614-6832
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Han, Fudong, Yue, Jie, Zhu, Xiangyang, and Wang, Chunsheng. Suppressing Li Dendrite Formation in Li 2 S‐P 2 S 5 Solid Electrolyte by LiI Incorporation. Germany: N. p., 2018. Web. doi:10.1002/aenm.201703644.
Han, Fudong, Yue, Jie, Zhu, Xiangyang, & Wang, Chunsheng. Suppressing Li Dendrite Formation in Li 2 S‐P 2 S 5 Solid Electrolyte by LiI Incorporation. Germany. https://doi.org/10.1002/aenm.201703644
Han, Fudong, Yue, Jie, Zhu, Xiangyang, and Wang, Chunsheng. Mon . "Suppressing Li Dendrite Formation in Li 2 S‐P 2 S 5 Solid Electrolyte by LiI Incorporation". Germany. https://doi.org/10.1002/aenm.201703644.
@article{osti_1425509,
title = {Suppressing Li Dendrite Formation in Li 2 S‐P 2 S 5 Solid Electrolyte by LiI Incorporation},
author = {Han, Fudong and Yue, Jie and Zhu, Xiangyang and Wang, Chunsheng},
abstractNote = {Abstract Solid electrolytes have been considered as a promising approach for Li dendrite prevention because of their high mechanical strength and high Li transference number. However, recent reports indicate that Li dendrites also form in Li 2 S‐P 2 S 5 based sulfide electrolytes at current densities much lower than that in the conventional liquid electrolytes. The methods of suppressing dendrite formation in sulfide electrolytes have rarely been reported because the mechanism for the “unexpected” dendrite formation is unclear, limiting the successful utilization of high‐energy Li anode with these electrolytes. Herein, the authors demonstrate that the Li dendrite formation in Li 2 S‐P 2 S 5 glass can be effectively suppressed by tuning the composition of the solid electrolyte interphase (SEI) at the Li/electrolyte interface through incorporating LiI into the electrolyte. This approach introduces high ionic conductivity but electronic insulation of LiI in the SEI, and more importantly, improves the mobility of Li atoms, promoting the Li depositon at the interface and thus suppresses dendrite growth. It is shown that the critical current density is improved significantly after incorporating LiI into Li 2 S‐P 2 S 5 glass, reaching 3.90 mA cm −2 at 100 °C after adding 30 mol% LiI. Stable cycling of the Li‐Li cells for 200 h is also achieved at 1.50 mA cm −2 at 100 °C.},
doi = {10.1002/aenm.201703644},
journal = {Advanced Energy Materials},
number = 18,
volume = 8,
place = {Germany},
year = {Mon Mar 12 00:00:00 EDT 2018},
month = {Mon Mar 12 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/aenm.201703644

Citation Metrics:
Cited by: 252 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Lithium ion conductivity in Li 2 S–P 2 S 5 glasses – building units and local structure evolution during the crystallization of superionic conductors Li 3 PS 4 , Li 7 P 3 S 11 and Li 4 P 2 S 7
journal, January 2017

  • Dietrich, Christian; Weber, Dominik A.; Sedlmaier, Stefan J.
  • Journal of Materials Chemistry A, Vol. 5, Issue 34
  • DOI: 10.1039/C7TA06067J

Elastic Properties of the Solid Electrolyte Li 7 La 3 Zr 2 O 12 (LLZO)
journal, December 2015


Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte
journal, March 2016


Interface-Engineered All-Solid-State Li-Ion Batteries Based on Garnet-Type Fast Li + Conductors
journal, July 2016

  • van den Broek, Jan; Afyon, Semih; Rupp, Jennifer L. M.
  • Advanced Energy Materials, Vol. 6, Issue 19
  • DOI: 10.1002/aenm.201600736

Recent Developments of the Lithium Metal Anode for Rechargeable Non-Aqueous Batteries
journal, July 2016

  • Zhang, Kai; Lee, Gi-Hyeok; Park, Mihui
  • Advanced Energy Materials, Vol. 6, Issue 20
  • DOI: 10.1002/aenm.201600811

Effect of Surface Microstructure on Electrochemical Performance of Garnet Solid Electrolytes
journal, January 2015

  • Cheng, Lei; Chen, Wei; Kunz, Martin
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 3
  • DOI: 10.1021/am508111r

Solid Electrolyte: the Key for High-Voltage Lithium Batteries
journal, October 2014

  • Li, Juchuan; Ma, Cheng; Chi, Miaofang
  • Advanced Energy Materials, Vol. 5, Issue 4
  • DOI: 10.1002/aenm.201401408

Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
journal, October 2015

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 42
  • DOI: 10.1021/acsami.5b07517

One-pot liquid phase synthesis of (100− x )Li 3 PS 4 – x LiI solid electrolytes
journal, October 2017


A High-Voltage, Solid-State Battery System
journal, January 1969

  • Liang, Charles C.; Epstein, James; Boyle, Gerard H.
  • Journal of The Electrochemical Society, Vol. 116, Issue 10
  • DOI: 10.1149/1.2411560

A solid future for battery development
journal, September 2016


Li 7 La 3 Zr 2 O 12 Interface Modification for Li Dendrite Prevention
journal, April 2016

  • Tsai, Chih-Long; Roddatis, Vladimir; Chandran, C. Vinod
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 16
  • DOI: 10.1021/acsami.6b00831

Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High-Concentration Electrolyte Layer
journal, February 2016

  • Zheng, Jianming; Yan, Pengfei; Mei, Donghai
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201502151

Impedance characterization reveals mixed conducting interphases between sulfidic superionic conductors and lithium metal electrodes
journal, June 2017


Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density
journal, January 2016


Stable Artificial Solid Electrolyte Interphases for Lithium Batteries
journal, May 2017


A Battery Made from a Single Material
journal, April 2015


Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li 7 La 3 Zr 2 O 12 solid-state electrolyte
journal, January 2017

  • Sharafi, Asma; Haslam, Catherine G.; Kerns, Robert D.
  • J. Mater. Chem. A, Vol. 5, Issue 40
  • DOI: 10.1039/C7TA06790A

Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li 10 GeP 2 S 12 at the Lithium Metal Anode
journal, March 2016


SiO 2 Hollow Nanosphere-Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life
journal, January 2016

  • Zhou, Dong; Liu, Ruliang; He, Yan-Bing
  • Advanced Energy Materials, Vol. 6, Issue 7
  • DOI: 10.1002/aenm.201502214

Electronic excitations of LiI within many-body perturbation theory
journal, August 2014


Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery
journal, July 2013

  • Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02261

Grain boundary modification to suppress lithium penetration through garnet-type solid electrolyte
journal, September 2017


Structure, ionic conductivity and electrochemical stability of Li2S–P2S5–LiI glass and glass–ceramic electrolytes
journal, March 2012


Superionic conduction in Li 2 S - P 2 S 5 - LiI - glasses
journal, October 1981


High-power all-solid-state batteries using sulfide superionic conductors
journal, March 2016


An Iodide-Based Li 7 P 2 S 8 I Superionic Conductor
journal, January 2015

  • Rangasamy, Ezhiylmurugan; Liu, Zengcai; Gobet, Mallory
  • Journal of the American Chemical Society, Vol. 137, Issue 4
  • DOI: 10.1021/ja508723m

Solid-state lithium battery with graphite anode
journal, March 2003


Very Stable Lithium Metal Stripping–Plating at a High Rate and High Areal Capacity in Fluoroethylene Carbonate-Based Organic Electrolyte Solution
journal, May 2017


Onset of dendritic growth in lithium/polymer cells
journal, July 2001


The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
journal, January 2005

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1850854

Thin film rechargeable Li batteries
journal, August 1994

  • Jones, Steven D.; Akridge, James R.; Shokoohi, Frough K.
  • Solid State Ionics, Vol. 69, Issue 3-4, p. 357-368
  • DOI: 10.1016/0167-2738(94)90423-5

Effect of Gold Layer on Interface Resistance between Lithium Metal Anode and Li 6.25 Al 0.25 La 3 Zr 2 O 12 Solid Electrolyte
journal, January 2017

  • Wakasugi, Jungo; Munakata, Hirokazu; Kanamura, Kiyoshi
  • Journal of The Electrochemical Society, Vol. 164, Issue 6
  • DOI: 10.1149/2.0471706jes

Effect of Processing Conditions of 75Li2S-25P2S5 Solid Electrolyte on its DC Electrochemical Behavior
journal, May 2017


Tunable Ionic and Electronic Conduction of Lithium Nitride via Phosphorus and Arsenic Substitution: A First-Principles Study
journal, September 2010

  • Wu, Shunnian; Neo, Su San; Dong, Zhili
  • The Journal of Physical Chemistry C, Vol. 114, Issue 39
  • DOI: 10.1021/jp1045047

Dendritic growth mechanisms in lithium/polymer cells
journal, September 1999


Electrochemical Stability of Li 10 GeP 2 S 12 and Li 7 La 3 Zr 2 O 12 Solid Electrolytes
journal, January 2016

  • Han, Fudong; Zhu, Yizhou; He, Xingfeng
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201501590

Li 4 PS 4 I: A Li + Superionic Conductor Synthesized by a Solvent-Based Soft Chemistry Approach
journal, February 2017


In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S–P2S5 solid electrolyte
journal, January 2013

  • Nagao, Motohiro; Hayashi, Akitoshi; Tatsumisago, Masahiro
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 42
  • DOI: 10.1039/c3cp51059j

Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes
journal, July 2017

  • Porz, Lukas; Swamy, Tushar; Sheldon, Brian W.
  • Advanced Energy Materials, Vol. 7, Issue 20
  • DOI: 10.1002/aenm.201701003

Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
journal, December 2017


Preparation and ionic conductivity of (100−x)(0.8Li2S·0.2P2S5)·xLiI glass–ceramic electrolytes
journal, October 2012

  • Ujiie, Satoshi; Hayashi, Akitoshi; Tatsumisago, Masahiro
  • Journal of Solid State Electrochemistry, Vol. 17, Issue 3
  • DOI: 10.1007/s10008-012-1900-7

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041