DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonlinear saturation of the slab ITG instability and zonal flow generation with fully kinetic ions

Abstract

Fully kinetic turbulence models are of interest for their potential to validate or replace gyrokinetic models in plasma regimes where the gyrokinetic expansion parameters are marginal. Here, we demonstrate fully kinetic ion capability by simulating the growth and nonlinear saturation of the ion-temperature-gradient instability in shearless slab geometry assuming adiabatic electrons and including zonal flow dynamics. The ion trajectories are integrated using the Lorentz force, and the cyclotron motion is fully resolved. Linear growth and nonlinear saturation characteristics show excellent agreement with analogous gyrokinetic simulations across a wide range of parameters. The fully kinetic simulation accurately reproduces the nonlinearly generated zonal flow. In conclusion, this work demonstrates nonlinear capability, resolution of weak gradient drive, and zonal flow physics, which are critical aspects of modeling plasma turbulence with full ion dynamics.

Authors:
 [1];  [2];  [1];  [1]
  1. Univ. of Colorado, Boulder, CO (United States)
  2. Univ. of Colorado, Boulder, CO (United States); Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Publication Date:
Research Org.:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1473697
Alternate Identifier(s):
OSTI ID: 1425247
Grant/Contract Number:  
FG02-08ER54954; SC000801
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 5; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Miecnikowski, Matthew T., Sturdevant, Benjamin J., Chen, Yang, and Parker, Scott E. Nonlinear saturation of the slab ITG instability and zonal flow generation with fully kinetic ions. United States: N. p., 2018. Web. doi:10.1063/1.5011681.
Miecnikowski, Matthew T., Sturdevant, Benjamin J., Chen, Yang, & Parker, Scott E. Nonlinear saturation of the slab ITG instability and zonal flow generation with fully kinetic ions. United States. https://doi.org/10.1063/1.5011681
Miecnikowski, Matthew T., Sturdevant, Benjamin J., Chen, Yang, and Parker, Scott E. Fri . "Nonlinear saturation of the slab ITG instability and zonal flow generation with fully kinetic ions". United States. https://doi.org/10.1063/1.5011681. https://www.osti.gov/servlets/purl/1473697.
@article{osti_1473697,
title = {Nonlinear saturation of the slab ITG instability and zonal flow generation with fully kinetic ions},
author = {Miecnikowski, Matthew T. and Sturdevant, Benjamin J. and Chen, Yang and Parker, Scott E.},
abstractNote = {Fully kinetic turbulence models are of interest for their potential to validate or replace gyrokinetic models in plasma regimes where the gyrokinetic expansion parameters are marginal. Here, we demonstrate fully kinetic ion capability by simulating the growth and nonlinear saturation of the ion-temperature-gradient instability in shearless slab geometry assuming adiabatic electrons and including zonal flow dynamics. The ion trajectories are integrated using the Lorentz force, and the cyclotron motion is fully resolved. Linear growth and nonlinear saturation characteristics show excellent agreement with analogous gyrokinetic simulations across a wide range of parameters. The fully kinetic simulation accurately reproduces the nonlinearly generated zonal flow. In conclusion, this work demonstrates nonlinear capability, resolution of weak gradient drive, and zonal flow physics, which are critical aspects of modeling plasma turbulence with full ion dynamics.},
doi = {10.1063/1.5011681},
journal = {Physics of Plasmas},
number = 5,
volume = 25,
place = {United States},
year = {Fri Mar 09 00:00:00 EST 2018},
month = {Fri Mar 09 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Linear frequency and growth rate of fully kinetic (FK) simulation are compared against theory and gyrokinetic (GK) simulation for a range of values of ky. Fixed parameters are $k_x$ = 0.1 and $k_T$ = 0.05.

Save / Share:

Works referenced in this record:

Gyrokinetic particle simulation of ion temperature gradient drift instabilities
journal, January 1988

  • Lee, W. W.; Tang, W. M.
  • Physics of Fluids, Vol. 31, Issue 3
  • DOI: 10.1063/1.866844

Particle-in-cell simulation with Vlasov ions and drift kinetic electrons
journal, May 2009

  • Chen, Yang; Parker, Scott E.
  • Physics of Plasmas, Vol. 16, Issue 5
  • DOI: 10.1063/1.3138743

Low frequency fully kinetic simulation of the toroidal ion temperature gradient instability
journal, August 2017

  • Sturdevant, B. J.; Chen, Y.; Parker, S. E.
  • Physics of Plasmas, Vol. 24, Issue 8
  • DOI: 10.1063/1.4999945

A gyrokinetic electron and fully kinetic ion plasma simulation model
journal, March 2005


Frequency and Damping Estimation Methods - An Overview
journal, January 2011


A simulation model for studying low-frequency microinstabilities
journal, February 1978


An implicit δf particle-in-cell method with sub-cycling and orbit averaging for Lorentz ions
journal, July 2016

  • Sturdevant, Benjamin J.; Parker, Scott E.; Chen, Yang
  • Journal of Computational Physics, Vol. 316
  • DOI: 10.1016/j.jcp.2016.04.036

Verification of nonlinear particle simulation of radio frequency waves in tokamak
journal, October 2015

  • Kuley, A.; Lin, Z.; Bao, J.
  • Physics of Plasmas, Vol. 22, Issue 10
  • DOI: 10.1063/1.4934606

Coarse-graining the electron distribution in turbulence simulations of tokamak plasmas
journal, May 2008

  • Chen, Yang; Parker, Scott E.; Rewoldt, Gregory
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2884040

Numerical study of tilt stability of prolate field-reversed configurations
journal, December 2000

  • Belova, E. V.; Jardin, S. C.; Ji, H.
  • Physics of Plasmas, Vol. 7, Issue 12
  • DOI: 10.1063/1.1318929

An improved gyrokinetic electron and fully kinetic ion particle simulation scheme: benchmark with a linear tearing mode
journal, April 2011


A second-order semi-implicit method for hybrid simulation
journal, July 2013


On boundary conditions for a simulation plasma in a magnetic field
journal, October 1979


Nonlinear theory of drift-cyclotron kinetics and the possible breakdown of gyro-kinetics
journal, January 2013

  • Waltz, R. E.; Deng, Zhao
  • Physics of Plasmas, Vol. 20, Issue 1
  • DOI: 10.1063/1.4773039

Considerations of ion‐temperature‐gradient‐driven turbulence
journal, October 1991

  • Cowley, S. C.; Kulsrud, R. M.; Sudan, R.
  • Physics of Fluids B: Plasma Physics, Vol. 3, Issue 10
  • DOI: 10.1063/1.859913

Gyrokinetic approach in particle simulation
journal, January 1983


Limitations of gyrokinetics on transport time scales
journal, April 2008


Large-scale gyrokinetic turbulence simulations: Effects of profile variation
journal, May 1999

  • Parker, Scott E.; Kim, Charlson; Chen, Yang
  • Physics of Plasmas, Vol. 6, Issue 5
  • DOI: 10.1063/1.873429

Low-noise particle algorithms for extended magnetohydrodynamic closure
journal, May 2008

  • Barnes, D. C.; Cheng, J.; Parker, S. E.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2839290

Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria
journal, January 1982


Why is Boris algorithm so good?
journal, August 2013

  • Qin, Hong; Zhang, Shuangxi; Xiao, Jianyuan
  • Physics of Plasmas, Vol. 20, Issue 8
  • DOI: 10.1063/1.4818428

A fully nonlinear characteristic method for gyrokinetic simulation
journal, January 1993

  • Parker, S. E.; Lee, W. W.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 1
  • DOI: 10.1063/1.860870

Gyrokinetic simulation of ion temperature gradient driven turbulence in 3D toroidal geometry
journal, September 1993


Global Gyrokinetic Simulation of Tokamak Edge Pedestal Instabilities
journal, November 2012


Comparisons of gyrofluid and gyrokinetic simulations*
journal, May 1994

  • Parker, S. E.; Dorland, W.; Santoro, R. A.
  • Physics of Plasmas, Vol. 1, Issue 5
  • DOI: 10.1063/1.870696

Global gyrokinetic simulations of the H-mode tokamak edge pedestal
journal, May 2013

  • Wan, Weigang; Parker, Scott E.; Chen, Yang
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803890

Plasma Physics via Computer Simulation
book, January 1991


Nearest-Grid-Point Interpolation in Gyrokinetic Particle-in-Cell Simulation
journal, May 2002


Particle-in-cell δf gyrokinetic simulations of the microtearing mode
journal, January 2016

  • Chowdhury, J.; Chen, Yang; Wan, Weigang
  • Physics of Plasmas, Vol. 23, Issue 1
  • DOI: 10.1063/1.4940333

Principles of Plasma Physics
journal, December 1973

  • Krall, Nicholas A.; Trivelpiece, Alvin W.; Gross, Robert A.
  • American Journal of Physics, Vol. 41, Issue 12
  • DOI: 10.1119/1.1987587

Works referencing / citing this record:

A massively parallel semi-Lagrangian solver for the six-dimensional Vlasov–Poisson equation
journal, January 2019

  • Kormann, Katharina; Reuter, Klaus; Rampp, Markus
  • The International Journal of High Performance Computing Applications, Vol. 33, Issue 5
  • DOI: 10.1177/1094342019834644

A massively parallel semi-Lagrangian solver for the six-dimensional Vlasov-Poisson equation
text, January 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.