DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effective Carrier‐Concentration Tuning of SnO 2 Quantum Dot Electron‐Selective Layers for High‐Performance Planar Perovskite Solar Cells

Abstract

Abstract The carrier concentration of the electron‐selective layer (ESL) and hole‐selective layer can significantly affect the performance of organic–inorganic lead halide perovskite solar cells (PSCs). Herein, a facile yet effective two‐step method, i.e., room‐temperature colloidal synthesis and low‐temperature removal of additive (thiourea), to control the carrier concentration of SnO 2 quantum dot (QD) ESLs to achieve high‐performance PSCs is developed. By optimizing the electron density of SnO 2 QD ESLs, a champion stabilized power output of 20.32% for the planar PSCs using triple cation perovskite absorber and 19.73% for those using CH 3 NH 3 PbI 3 absorber is achieved. The superior uniformity of low‐temperature processed SnO 2 QD ESLs also enables the fabrication of ≈19% efficiency PSCs with an aperture area of 1.0 cm 2 and 16.97% efficiency flexible device. The results demonstrate the promise of carrier‐concentration‐controlled SnO 2 QD ESLs for fabricating stable, efficient, reproducible, large‐scale, and flexible planar PSCs.

Authors:
 [1];  [2];  [3];  [3];  [3];  [3];  [3];  [3];  [1];  [3];  [3];  [4];  [5]; ORCiD logo [3]
  1. Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education of China School of Physics and Technology Wuhan University Wuhan 430072 P. R. China, Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR China
  2. Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education of China School of Physics and Technology Wuhan University Wuhan 430072 P. R. China, Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization The University of Toledo Toledo OH 43606 USA
  3. Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education of China School of Physics and Technology Wuhan University Wuhan 430072 P. R. China
  4. Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR China
  5. Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization The University of Toledo Toledo OH 43606 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1423149
Grant/Contract Number:  
DE‐FOA‐0000990
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Name: Advanced Materials Journal Volume: 30 Journal Issue: 14; Journal ID: ISSN 0935-9648
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Yang, Guang, Chen, Cong, Yao, Fang, Chen, Zhiliang, Zhang, Qi, Zheng, Xiaolu, Ma, Junjie, Lei, Hongwei, Qin, Pingli, Xiong, Liangbin, Ke, Weijun, Li, Gang, Yan, Yanfa, and Fang, Guojia. Effective Carrier‐Concentration Tuning of SnO 2 Quantum Dot Electron‐Selective Layers for High‐Performance Planar Perovskite Solar Cells. Germany: N. p., 2018. Web. doi:10.1002/adma.201706023.
Yang, Guang, Chen, Cong, Yao, Fang, Chen, Zhiliang, Zhang, Qi, Zheng, Xiaolu, Ma, Junjie, Lei, Hongwei, Qin, Pingli, Xiong, Liangbin, Ke, Weijun, Li, Gang, Yan, Yanfa, & Fang, Guojia. Effective Carrier‐Concentration Tuning of SnO 2 Quantum Dot Electron‐Selective Layers for High‐Performance Planar Perovskite Solar Cells. Germany. https://doi.org/10.1002/adma.201706023
Yang, Guang, Chen, Cong, Yao, Fang, Chen, Zhiliang, Zhang, Qi, Zheng, Xiaolu, Ma, Junjie, Lei, Hongwei, Qin, Pingli, Xiong, Liangbin, Ke, Weijun, Li, Gang, Yan, Yanfa, and Fang, Guojia. Tue . "Effective Carrier‐Concentration Tuning of SnO 2 Quantum Dot Electron‐Selective Layers for High‐Performance Planar Perovskite Solar Cells". Germany. https://doi.org/10.1002/adma.201706023.
@article{osti_1423149,
title = {Effective Carrier‐Concentration Tuning of SnO 2 Quantum Dot Electron‐Selective Layers for High‐Performance Planar Perovskite Solar Cells},
author = {Yang, Guang and Chen, Cong and Yao, Fang and Chen, Zhiliang and Zhang, Qi and Zheng, Xiaolu and Ma, Junjie and Lei, Hongwei and Qin, Pingli and Xiong, Liangbin and Ke, Weijun and Li, Gang and Yan, Yanfa and Fang, Guojia},
abstractNote = {Abstract The carrier concentration of the electron‐selective layer (ESL) and hole‐selective layer can significantly affect the performance of organic–inorganic lead halide perovskite solar cells (PSCs). Herein, a facile yet effective two‐step method, i.e., room‐temperature colloidal synthesis and low‐temperature removal of additive (thiourea), to control the carrier concentration of SnO 2 quantum dot (QD) ESLs to achieve high‐performance PSCs is developed. By optimizing the electron density of SnO 2 QD ESLs, a champion stabilized power output of 20.32% for the planar PSCs using triple cation perovskite absorber and 19.73% for those using CH 3 NH 3 PbI 3 absorber is achieved. The superior uniformity of low‐temperature processed SnO 2 QD ESLs also enables the fabrication of ≈19% efficiency PSCs with an aperture area of 1.0 cm 2 and 16.97% efficiency flexible device. The results demonstrate the promise of carrier‐concentration‐controlled SnO 2 QD ESLs for fabricating stable, efficient, reproducible, large‐scale, and flexible planar PSCs.},
doi = {10.1002/adma.201706023},
journal = {Advanced Materials},
number = 14,
volume = 30,
place = {Germany},
year = {Tue Feb 27 00:00:00 EST 2018},
month = {Tue Feb 27 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/adma.201706023

Citation Metrics:
Cited by: 299 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells
journal, January 2015

  • Ke, Weijun; Zhao, Dewei; Cimaroli, Alexander J.
  • Journal of Materials Chemistry A, Vol. 3, Issue 47
  • DOI: 10.1039/C5TA06574G

Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells
journal, June 2016


Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells
journal, May 2016

  • Ke, Weijun; Xiao, Chuanxiao; Wang, Changlei
  • Advanced Materials, Vol. 28, Issue 26
  • DOI: 10.1002/adma.201600594

Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method
journal, July 2016

  • Ding, Bin; Gao, Lili; Liang, Lusheng
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 31
  • DOI: 10.1021/acsami.6b05862

Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers
journal, January 2016

  • Kim, Hobeom; Lim, Kyung-Geun; Lee, Tae-Woo
  • Energy & Environmental Science, Vol. 9, Issue 1
  • DOI: 10.1039/C5EE02194D

Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement
journal, January 2017

  • Yang, Guang; Wang, Changlei; Lei, Hongwei
  • Journal of Materials Chemistry A, Vol. 5, Issue 4
  • DOI: 10.1039/C6TA08783C

Large-Grain Formamidinium PbI 3- x Br x for High-Performance Perovskite Solar Cells via Intermediate Halide Exchange
journal, January 2017

  • Long, Mingzhu; Zhang, Tiankai; Xu, Wangying
  • Advanced Energy Materials, Vol. 7, Issue 12
  • DOI: 10.1002/aenm.201601882

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells
journal, May 2009

  • Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo
  • Journal of the American Chemical Society, Vol. 131, Issue 17, p. 6050-6051
  • DOI: 10.1021/ja809598r

Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%
journal, September 2016


Low Temperature Solution-Processed Sb:SnO 2 Nanocrystals for Efficient Planar Perovskite Solar Cells
journal, August 2016


Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells
journal, January 2016

  • Wang, Changlei; Zhao, Dewei; Grice, Corey R.
  • Journal of Materials Chemistry A, Vol. 4, Issue 31
  • DOI: 10.1039/C6TA04503K

Interface engineering of highly efficient perovskite solar cells
journal, July 2014


Effect of cesium chloride modification on the film morphology and UV-induced stability of planar perovskite solar cells
journal, January 2016

  • Li, Wenzhe; Li, Jiangwei; Niu, Guangda
  • Journal of Materials Chemistry A, Vol. 4, Issue 30
  • DOI: 10.1039/C5TA09165A

Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells
journal, December 2016


High-performance photovoltaic perovskite layers fabricated through intramolecular exchange
journal, May 2015


Advances in Perovskite Solar Cells
journal, January 2016


Efficient luminescent solar cells based on tailored mixed-cation perovskites
journal, January 2016


Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency
journal, January 2016

  • Saliba, Michael; Matsui, Taisuke; Seo, Ji-Youn
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C5EE03874J

Hysteresis-Suppressed High-Efficiency Flexible Perovskite Solar Cells Using Solid-State Ionic-Liquids for Effective Electron Transport
journal, May 2016


Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites
journal, October 2012


Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources
journal, January 2017

  • Yoon, Jungjin; Sung, Hyangki; Lee, Gunhee
  • Energy & Environmental Science, Vol. 10, Issue 1
  • DOI: 10.1039/C6EE02650H

The Progress of Interface Design in Perovskite-Based Solar Cells
journal, June 2016

  • Fan, Rundong; Huang, Yuan; Wang, Ligang
  • Advanced Energy Materials, Vol. 6, Issue 17
  • DOI: 10.1002/aenm.201600460

General Working Principles of CH 3 NH 3 PbX 3 Perovskite Solar Cells
journal, January 2014

  • Gonzalez-Pedro, Victoria; Juarez-Perez, Emilio J.; Arsyad, Waode-Sukmawati
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl404252e

Ultrathin Buffer Layers of SnO 2 by Atomic Layer Deposition: Perfect Blocking Function and Thermal Stability
journal, December 2016

  • Kavan, Ladislav; Steier, Ludmilla; Grätzel, Michael
  • The Journal of Physical Chemistry C, Vol. 121, Issue 1
  • DOI: 10.1021/acs.jpcc.6b09965

High efficiency stable inverted perovskite solar cells without current hysteresis
journal, January 2015

  • Wu, Chun-Guey; Chiang, Chien-Hung; Tseng, Zong-Liang
  • Energy & Environmental Science, Vol. 8, Issue 9
  • DOI: 10.1039/C5EE00645G

Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers
journal, October 2015


Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification
journal, January 2016

  • Li, Wenzhe; Zhang, Wei; Van Reenen, Stephan
  • Energy & Environmental Science, Vol. 9, Issue 2
  • DOI: 10.1039/C5EE03522H

Compositional engineering of perovskite materials for high-performance solar cells
journal, January 2015

  • Jeon, Nam Joong; Noh, Jun Hong; Yang, Woon Seok
  • Nature, Vol. 517, Issue 7535
  • DOI: 10.1038/nature14133

Towards stable and commercially available perovskite solar cells
journal, October 2016


Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells
journal, November 2016


Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells
journal, August 2016

  • Li, Yanbo; Cooper, Jason K.; Liu, Wenjun
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12446

Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells
journal, December 2013

  • Leijtens, Tomas; Eperon, Giles E.; Pathak, Sandeep
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3885

Recent progress in electron transport layers for efficient perovskite solar cells
journal, January 2016

  • Yang, Guang; Tao, Hong; Qin, Pingli
  • Journal of Materials Chemistry A, Vol. 4, Issue 11
  • DOI: 10.1039/C5TA09011C

Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates
journal, November 2013

  • Docampo, Pablo; Ball, James M.; Darwich, Mariam
  • Nature Communications, Vol. 4, Article No. 2761
  • DOI: 10.1038/ncomms3761

Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide
journal, January 2016

  • Anaraki, Elham Halvani; Kermanpur, Ahmad; Steier, Ludmilla
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE02390H

Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%
journal, August 2012

  • Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00591

Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells
journal, May 2016

  • Shin, Seong Sik; Yang, Woon Seok; Yeom, Eun Joo
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 10
  • DOI: 10.1021/acs.jpclett.6b00295

Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells
journal, May 2015

  • Ke, Weijun; Fang, Guojia; Liu, Qin
  • Journal of the American Chemical Society, Vol. 137, Issue 21
  • DOI: 10.1021/jacs.5b01994

Highly efficient planar perovskite solar cells through band alignment engineering
journal, January 2015

  • Correa Baena, Juan Pablo; Steier, Ludmilla; Tress, Wolfgang
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE02608C