DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser

Abstract

A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments (Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determine that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.

Authors:
 [1];  [2];  [3];  [1];  [2];  [4];  [1];  [5];  [6];  [6];  [6];  [7];  [8];  [8];  [8];  [9];  [6];  [10];  [1];  [6] more »;  [6];  [8];  [11];  [9];  [12];  [13];  [12];  [14];  [6];  [6];  [6];  [9];  [5];  [5];  [5];  [15];  [10];  [11];  [5];  [6];  [6];  [7];  [16];  [6];  [8];  [17] « less
  1. A*STAR (Agency for Science, Technology and Research) (Singapore)
  2. National Univ. of Singapore (Singapore)
  3. A*STAR (Agency for Science, Technology and Research) (Singapore); National Univ. of Singapore (Singapore)
  4. Univ. of Michigan, Ann Arbor, MI (United States)
  5. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  6. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  7. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Univ. of Hamburg, Hamburg (Germany)
  8. Univ. of Gothenburg, Gothenburg (Sweden)
  9. Univ. of California, Los Angeles, CA (United States)
  10. Univ. of Canterbury, Christchurch (New Zealand)
  11. Institut Laue-Langevin, Grenoble (France); Keele Univ., Staffordshire (United Kingdom)
  12. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  13. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Howard Hughes Medical Institute, Ashburn, VA (United States)
  14. Uppsala Univ., Uppsala (Sweden)
  15. Northeastern Univ., Boston, MA (United States)
  16. National Univ. of Singapore (Singapore); A*STAR (Agency for Science, Technology and Research) (Singapore)
  17. National Univ. of Singapore (Singapore); A*STAR (Agency for Science, Technology and Research) (Singapore); Okayama Univ., Okayama (Japan)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1420139
Alternate Identifier(s):
OSTI ID: 1393240
Grant/Contract Number:  
AC02-76SF00515; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Cytoskeleton
Additional Journal Information:
Journal Volume: 74; Journal Issue: 12; Journal ID: ISSN 1949-3584
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; fiber diffraction; filament systems; XFEL

Citation Formats

Popp, David, Loh, N. Duane, Zorgati, Habiba, Ghoshdastider, Umesh, Liow, Lu Ting, Ivanova, Magdalena I., Larsson, Marten, DePonte, Daniel P., Bean, Richard, Beyerlein, Kenneth R., Gati, Cornelius, Oberthuer, Dominik, Arnlund, David, Branden, Gisela, Berntsen, Peter, Cascio, Duilio, Chavas, Leonard M. G., Chen, Joe P. J., Ding, Ke, Fleckenstein, Holger, Gumprecht, Lars, Harimoorthy, Rajiv, Mossou, Estelle, Sawaya, Michael R., Brewster, Aaron S., Hattne, Johan, Sauter, Nicholas K., Seibert, Marvin, Seuring, Carolin, Stellato, Francesco, Tilp, Thomas, Eisenberg, David S., Messerschmidt, Marc, Williams, Garth J., Koglin, Jason E., Makowski, Lee, Millane, Rick P., Forsyth, Trevor, Boutet, Sebastien, White, Thomas A., Barty, Anton, Chapman, Henry, Chen, Swaine L., Liang, Mengning, Neutze, Richard, and Robinson, Robert C. Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser. United States: N. p., 2017. Web. doi:10.1002/cm.21378.
Popp, David, Loh, N. Duane, Zorgati, Habiba, Ghoshdastider, Umesh, Liow, Lu Ting, Ivanova, Magdalena I., Larsson, Marten, DePonte, Daniel P., Bean, Richard, Beyerlein, Kenneth R., Gati, Cornelius, Oberthuer, Dominik, Arnlund, David, Branden, Gisela, Berntsen, Peter, Cascio, Duilio, Chavas, Leonard M. G., Chen, Joe P. J., Ding, Ke, Fleckenstein, Holger, Gumprecht, Lars, Harimoorthy, Rajiv, Mossou, Estelle, Sawaya, Michael R., Brewster, Aaron S., Hattne, Johan, Sauter, Nicholas K., Seibert, Marvin, Seuring, Carolin, Stellato, Francesco, Tilp, Thomas, Eisenberg, David S., Messerschmidt, Marc, Williams, Garth J., Koglin, Jason E., Makowski, Lee, Millane, Rick P., Forsyth, Trevor, Boutet, Sebastien, White, Thomas A., Barty, Anton, Chapman, Henry, Chen, Swaine L., Liang, Mengning, Neutze, Richard, & Robinson, Robert C. Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser. United States. https://doi.org/10.1002/cm.21378
Popp, David, Loh, N. Duane, Zorgati, Habiba, Ghoshdastider, Umesh, Liow, Lu Ting, Ivanova, Magdalena I., Larsson, Marten, DePonte, Daniel P., Bean, Richard, Beyerlein, Kenneth R., Gati, Cornelius, Oberthuer, Dominik, Arnlund, David, Branden, Gisela, Berntsen, Peter, Cascio, Duilio, Chavas, Leonard M. G., Chen, Joe P. J., Ding, Ke, Fleckenstein, Holger, Gumprecht, Lars, Harimoorthy, Rajiv, Mossou, Estelle, Sawaya, Michael R., Brewster, Aaron S., Hattne, Johan, Sauter, Nicholas K., Seibert, Marvin, Seuring, Carolin, Stellato, Francesco, Tilp, Thomas, Eisenberg, David S., Messerschmidt, Marc, Williams, Garth J., Koglin, Jason E., Makowski, Lee, Millane, Rick P., Forsyth, Trevor, Boutet, Sebastien, White, Thomas A., Barty, Anton, Chapman, Henry, Chen, Swaine L., Liang, Mengning, Neutze, Richard, and Robinson, Robert C. Fri . "Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser". United States. https://doi.org/10.1002/cm.21378. https://www.osti.gov/servlets/purl/1420139.
@article{osti_1420139,
title = {Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser},
author = {Popp, David and Loh, N. Duane and Zorgati, Habiba and Ghoshdastider, Umesh and Liow, Lu Ting and Ivanova, Magdalena I. and Larsson, Marten and DePonte, Daniel P. and Bean, Richard and Beyerlein, Kenneth R. and Gati, Cornelius and Oberthuer, Dominik and Arnlund, David and Branden, Gisela and Berntsen, Peter and Cascio, Duilio and Chavas, Leonard M. G. and Chen, Joe P. J. and Ding, Ke and Fleckenstein, Holger and Gumprecht, Lars and Harimoorthy, Rajiv and Mossou, Estelle and Sawaya, Michael R. and Brewster, Aaron S. and Hattne, Johan and Sauter, Nicholas K. and Seibert, Marvin and Seuring, Carolin and Stellato, Francesco and Tilp, Thomas and Eisenberg, David S. and Messerschmidt, Marc and Williams, Garth J. and Koglin, Jason E. and Makowski, Lee and Millane, Rick P. and Forsyth, Trevor and Boutet, Sebastien and White, Thomas A. and Barty, Anton and Chapman, Henry and Chen, Swaine L. and Liang, Mengning and Neutze, Richard and Robinson, Robert C.},
abstractNote = {A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments (Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determine that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.},
doi = {10.1002/cm.21378},
journal = {Cytoskeleton},
number = 12,
volume = 74,
place = {United States},
year = {Fri Jun 02 00:00:00 EDT 2017},
month = {Fri Jun 02 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Flow alignment of filamentous samples in the GDVN. Top: Schematic of the GDVN, where a suspension of filamentous samples inside a capillary is focused into a micro-jet in the high-vacuum X-ray imaging chamber using a virtual nozzle formed by a co-axial gas flow. Extended filaments flow-align because ofmore » differential flow speeds within the virtual nozzle. Bottom: Filament systems used in these studies. (a) Electron micrograph of F-actin filaments formed by polymerizing G-actin with 50 mM KCl for 2 hr in the presence of gelsolin (4,000:1). (b) Electron micrograph of type I pili that were sheared from the surface of E. coli. (c) Electron micrograph of AgelN amyloid fibrils formed in water after 5 days of incubation. (d) Electron micrograph showing the needle-like appearance of the G11A aggregates« less

Save / Share:

Works referenced in this record:

Cheetah : software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data
journal, May 2014

  • Barty, Anton; Kirian, Richard A.; Maia, Filipe R. N. C.
  • Journal of Applied Crystallography, Vol. 47, Issue 3
  • DOI: 10.1107/S1600576714007626

The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS)
journal, March 2010


Single-particle coherent diffractive imaging with a soft x-ray free electron laser: towards soot aerosol morphology
journal, September 2010

  • Bogan, Michael J.; Starodub, Dmitri; Hampton, Christina Y.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 43, Issue 19
  • DOI: 10.1088/0953-4075/43/19/194013

Atomic model of the actin filament
journal, September 1990

  • Holmes, Kenneth C.; Popp, David; Gebhard, Werner
  • Nature, Vol. 347, Issue 6288
  • DOI: 10.1038/347044a0

Microtubules in Bacteria: Ancient Tubulins Build a Five-Protofilament Homolog of the Eukaryotic Cytoskeleton
journal, December 2011


THE CLASSIC: Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid
journal, January 2007


Chaperone-Usher Fimbriae of Escherichia coli
journal, January 2013


High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography
journal, May 2012


A review of actin binding proteins: new perspectives
journal, October 2007


Molecular Structure Of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid
journal, April 2003


Methods of preparing well-orientated sols of f-actin containing filaments suitable for X-ray diffraction
journal, October 1987


Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid
journal, April 1974

  • Watson, J. D.; Crick, F. H. C.
  • Nature, Vol. 248, Issue 5451
  • DOI: 10.1038/248765a0

Das R�ntgen-Faserdiagramm
journal, December 1922

  • Polanyi, M.; Weissenberg, K.
  • Zeitschrift f�r Physik, Vol. 9, Issue 1
  • DOI: 10.1007/BF01326961

A reconstruction algorithm for single-particle diffraction imaging experiments
journal, August 2009

  • Loh, Duane Ne-Te; Elser, Veit
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 65, Issue a1
  • DOI: 10.1107/s0108767309098584

Structural polymorphism of bacterial adhesion pili
journal, January 1995

  • Bullitt, Esther; Makowski, Lee
  • Nature, Vol. 373, Issue 6510
  • DOI: 10.1038/373164a0

Amyloid fibrils: Abnormal protein assembly
journal, July 2008


Molecular Structure of Nucleic Acids: Molecular Structure of Deoxypentose Nucleic Acids
journal, April 1953

  • Wilkins, M. H. F.; Stokes, A. R.; Wilson, H. R.
  • Nature, Vol. 171, Issue 4356
  • DOI: 10.1038/171738a0

Structure of tobacco mosaic virus at 3.6 A resolution: implications for assembly
journal, March 1986


Helical structure of P pili from Escherichia coli
journal, December 1992


Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers
journal, March 2014

  • Hattne, Johan; Echols, Nathaniel; Tran, Rosalie
  • Nature Methods, Vol. 11, Issue 5
  • DOI: 10.1038/nmeth.2887

Gelsolin: The tail of a molecular gymnast: Gelsolin Superfamily Proteins
journal, June 2013

  • Nag, Shalini; Larsson, Mårten; Robinson, Robert C.
  • Cytoskeleton, Vol. 70, Issue 7
  • DOI: 10.1002/cm.21117

The Effects of Shape on the Interaction of Colloidal Particles
journal, May 1949


Amyloid fibrils: Abnormal protein assembly
journal, July 2008


A Peptide Motif Consisting of Glycine, Alanine, and Valine Is Required for the Fibrillization and Cytotoxicity of Human α-Synuclein
journal, July 2003

  • Du, Hai-Ning; Tang, Lin; Luo, Xiao-Ying
  • Biochemistry, Vol. 42, Issue 29
  • DOI: 10.1021/bi034028+

FGL chaperone-assembled fimbrial polyadhesins: anti-immune armament of Gram-negative bacterial pathogens
journal, July 2007


X-Ray and Crystallographic Studies of Plant Virus Preparations. iii
journal, September 1941

  • Bernal, J. D.; Fankuchen, I.
  • The Journal of General Physiology, Vol. 25, Issue 1
  • DOI: 10.1085/jgp.25.1.147

Reconstruction algorithm for single-particle diffraction imaging experiments
journal, August 2009


X-ray lasers for structural and dynamic biology
journal, September 2012


Chaperone-Usher Fimbriae of Escherichia coli
journal, January 2013


Molecular basis of two subfamilies of immunoglobulin-like chaperones.
journal, August 1996


Natural and synthetic prion structure from X-ray fiber diffraction
journal, September 2009

  • Wille, H.; Bian, W.; McDonald, M.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 40
  • DOI: 10.1073/pnas.0909006106

Effect of the Length and Effective Diameter of F-Actin on the Filament Orientation in Liquid Crystalline Sols Measured by X-Ray Fiber Diffraction
journal, December 1998


Extensional stresses during polymer flow in ducts
journal, March 1978

  • Brizitsky, V. I.; Vinogradov, G. V.; Isayev, A. I.
  • Journal of Applied Polymer Science, Vol. 22, Issue 3
  • DOI: 10.1002/app.1978.070220314

Gas dynamic virtual nozzle for generation of microscopic droplet streams
journal, September 2008

  • DePonte, D. P.; Weierstall, U.; Schmidt, K.
  • Journal of Physics D: Applied Physics, Vol. 41, Issue 19, Article No. 195505
  • DOI: 10.1088/0022-3727/41/19/195505

The nature of the globular- to fibrous-actin transition
journal, January 2009

  • Oda, Toshiro; Iwasa, Mitsusada; Aihara, Tomoki
  • Nature, Vol. 457, Issue 7228
  • DOI: 10.1038/nature07685

Donor strand exchange and conformational changes during E. coli fimbrial formation
journal, December 2010

  • Le Trong, Isolde; Aprikian, Pavel; Kidd, Brian A.
  • Journal of Structural Biology, Vol. 172, Issue 3
  • DOI: 10.1016/j.jsb.2010.06.002

Atomic model of the actin filament
journal, September 1990

  • Holmes, Kenneth C.; Popp, David; Gebhard, Werner
  • Nature, Vol. 347, Issue 6288
  • DOI: 10.1038/347044a0

Methods of preparing well-orientated sols of f-actin containing filaments suitable for X-ray diffraction
journal, October 1987


Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight
journal, June 2012

  • Loh, N. D.; Hampton, C. Y.; Martin, A. V.
  • Nature, Vol. 486, Issue 7404
  • DOI: 10.1038/nature11222

“Cross-β” conformation in proteins
journal, March 1968


Molecular Structure of Nucleic Acids: Molecular Structure of Deoxypentose Nucleic Acids
journal, April 1953

  • Wilkins, M. H. F.; Stokes, A. R.; Wilson, H. R.
  • Nature, Vol. 171, Issue 4356
  • DOI: 10.1038/171738a0

Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: A comparative genomics approach
journal, April 2006

  • Chen, S. L.; Hung, C. -S.; Xu, J.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 15
  • DOI: 10.1073/pnas.0600938103

A Hydrophobic Stretch of 12 Amino Acid Residues in the Middle of α-Synuclein Is Essential for Filament Assembly
journal, November 2000

  • Giasson, Benoit I.; Murray, Ian V. J.; Trojanowski, John Q.
  • Journal of Biological Chemistry, Vol. 276, Issue 4
  • DOI: 10.1074/jbc.M008919200

Polymer crystallography
book, January 2010


Structural polymorphism of bacterial adhesion pili
journal, January 1995

  • Bullitt, Esther; Makowski, Lee
  • Nature, Vol. 373, Issue 6510
  • DOI: 10.1038/373164a0

Gas Dynamic Virtual Nozzle for Generation of Microscopic Droplet Streams
text, January 2008


Review: Formation and Properties of Amyloid-like Fibrils Derived from α-Synuclein and Related Proteins
journal, June 2000

  • El-Agnaf, Omar M. A.; Irvine, G. Brent
  • Journal of Structural Biology, Vol. 130, Issue 2-3
  • DOI: 10.1006/jsbi.2000.4262

Many ways to build an actin filament: Actin filament systems
journal, March 2011


Diffraction by helical structures
journal, March 1958


The Interplay between Viscoelastic and Thermodynamic Properties Determines the Birefringence of F-Actin Gels
journal, July 2005


Potential for biomolecular imaging with femtosecond X-ray pulses
journal, August 2000

  • Neutze, Richard; Wouts, Remco; van der Spoel, David
  • Nature, Vol. 406, Issue 6797
  • DOI: 10.1038/35021099

Multiple-step method for making exceptionally well-oriented liquid-crystalline sols of macromolecular assemblies
journal, May 1998

  • Yamashita, Ichiro; Suzuki, Hirofumi; Namba, Keiichi
  • Journal of Molecular Biology, Vol. 278, Issue 3
  • DOI: 10.1006/jmbi.1998.1710

X-ray lasers for structural and dynamic biology
journal, September 2012


Das R�ntgen-Faserdiagramm
journal, December 1921


Molecular configuration in sodium thymonucleate
journal, March 2004

  • Franklin, Rosalind E.; Gosling, R. G.
  • Resonance, Vol. 9, Issue 3
  • DOI: 10.1007/bf02834994

First lasing and operation of an ångstrom-wavelength free-electron laser
journal, August 2010


Molecular Configuration in Sodium Thymonucleate
journal, April 1953

  • Franklin, Rosalind E.; Gosling, R. G.
  • Nature, Vol. 171, Issue 4356
  • DOI: 10.1038/171740a0

Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction
journal, February 1998

  • Yamashita, llchiro; Hasegawa, Kazuya; Suzuki1, Hirofumi
  • Nature Structural Biology, Vol. 5, Issue 2
  • DOI: 10.1038/nsb0298-125

Crystallography and Electron Microscopy of Chaperone/Usher Pilus Systems
book, January 2011


Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction
journal, February 1998

  • Yamashita, llchiro; Hasegawa, Kazuya; Suzuki1, Hirofumi
  • Nature Structural Biology, Vol. 5, Issue 2
  • DOI: 10.1038/nsb0298-125

The functional domain grouping of microtubule associated proteins
journal, July 2008

  • Fisher, Katherine H.; Deane, Charlotte M.; Wakefield, James G.
  • Communicative & Integrative Biology, Vol. 1, Issue 1
  • DOI: 10.4161/cib.1.1.6795

The structure of native G-actin
journal, June 2010

  • Wang, Hui; Robinson, Robert C.; Burtnick, Leslie D.
  • Cytoskeleton, Vol. 67, Issue 7
  • DOI: 10.1002/cm.20458

Gelsolin amyloidosis: genetics, biochemistry, pathology and possible strategies for therapeutic intervention
journal, January 2012

  • Solomon, James P.; Page, Lesley J.; Balch, William E.
  • Critical Reviews in Biochemistry and Molecular Biology, Vol. 47, Issue 3
  • DOI: 10.3109/10409238.2012.661401

Ca2+ binding by domain 2 plays a critical role in the activation and stabilization of gelsolin
journal, August 2009

  • Nag, S.; Ma, Q.; Wang, H.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 33
  • DOI: 10.1073/pnas.0812374106

Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid
journal, April 1953

  • Watson, J. D.; Crick, F. H. C.
  • Nature, Vol. 171, Issue 4356
  • DOI: 10.1038/171737a0

Novel Actin-like Filament Structure from Clostridium tetani
journal, April 2012

  • Popp, David; Narita, Akihiro; Lee, Lin Jie
  • Journal of Biological Chemistry, Vol. 287, Issue 25
  • DOI: 10.1074/jbc.M112.341016

FGL chaperone-assembled fimbrial polyadhesins: anti-immune armament of Gram-negative bacterial pathogens
journal, July 2007


The Structure, Function, Synthesis and Genetic Control of Bacterial pili and a Molecular Model for dna and rna Transport in gram Negative Bacteria*
journal, June 1965


The Interplay between Viscoelastic and Thermodynamic Properties Determines the Birefringence of F-Actin Gels
journal, July 2005


The Effects of Shape on the Interaction of Colloidal Particles
journal, May 1949


Microtubules in Bacteria: Ancient Tubulins Build a Five-Protofilament Homolog of the Eukaryotic Cytoskeleton
journal, December 2011


Structure of tobacco mosaic virus at 3.6 A resolution: implications for assembly
journal, March 1986


Molecular structure of the ParM polymer and the mechanism leading to its nucleotide-driven dynamic instability
journal, January 2008


The Regulation of Rabbit Skeletal Muscle Contraction
journal, August 1971


Works referencing / citing this record:

Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene
journal, May 2018

  • Seuring, Carolin; Ayyer, Kartik; Filippaki, Eleftheria
  • Nature Communications, Vol. 9, Article No. 1836
  • DOI: 10.1038/s41467-018-04116-9

My various thoughts on actin
journal, January 2018


Coherent diffractive imaging of microtubules using an X-ray laser
journal, June 2019


Ultracompact 3D microfluidics for time-resolved structural biology
text, January 2020

  • Knoska, Juraj; Adriano, Luigi; Awel, Salah
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2020-00623

The Potential of EuPRAXIA@SPARC_LAB for Radiation Based Techniques
journal, March 2019

  • Balerna, Antonella; Bartocci, Samanta; Batignani, Giovanni
  • Condensed Matter, Vol. 4, Issue 1
  • DOI: 10.3390/condmat4010030

Ultracompact 3D microfluidics for time-resolved structural biology
journal, January 2020


Coherent diffractive imaging of microtubules using an X-ray laser
text, January 2019

  • Brändén, Gisela; Hammarin, Greger; Harimoorthy, Rajiv
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2019-03073

The Potential of EuPRAXIA@SPARC_LAB for Radiation Based Techniques
journal, March 2019

  • Balerna, Antonella; Bartocci, Samanta; Batignani, Giovanni
  • Condensed Matter, Vol. 4, Issue 1
  • DOI: 10.3390/condmat4010030

Ultracompact 3D microfluidics for time-resolved structural biology
journal, January 2020


Ultracompact 3D microfluidics for time-resolved structural biology
text, January 2020

  • Knoška, Juraj; Adriano, Luigi; Awel, Salah
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2020-00687

Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene
text, January 2018

  • Seuring, Carolin; Ayyer, Kartik; Filippaki, Eleftheria
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2018-01731

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.