skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production

Abstract

Solar-driven photocatalytic conversion of CO2 into fuels has attracted a lot of interest; however, developing active catalysts that can selectively convert CO2 to fuels with desirable reaction products remains a grand challenge. For instance, complete suppression of the competing H2 evolution during photocatalytic CO2-to-CO conversion has not been achieved before. We design and synthesize a spongy nickel-organic heterogeneous photocatalyst via a photochemical route. The catalyst has a crystalline network architecture with a high concentration of defects. It is highly active in converting CO2 to CO, with a production rate of ~1.6 × 104 μmol hour–1 gSolar-driven photocatalytic conversion of CO2 into fuels has attracted a lot of interest; however, developing active catalysts that can selectively convert CO2 to fuels with desirable reaction products remains a grand challenge. For instance, complete suppression of the competing H2 evolution during photocatalytic CO2-to-CO conversion has not been achieved before. We design and synthesize a spongy nickel-organic heterogeneous photocatalyst via a photochemical route. The catalyst has a crystalline network architecture with a high concentration of defects. It is highly active in converting CO2 to CO, with a production rate of ~1.6 × 104 μmol hour–1 g–1. No measurable H2 is generated during the reaction, leadingmore » to nearly 100% selective CO production over H2 evolution. When the spongy Ni-organic catalyst is enriched with Rh or Ag nanocrystals, the controlled photocatalytic CO2 reduction reactions generate formic acid and acetic acid. Achieving such a spongy nickel-organic photocatalyst is a critical step toward practical production of high-value multicarbon fuels using solar energy. 1. No measurable H2 is generated during the reaction, leading to nearly 100% selective CO production over H2 evolution. When the spongy Ni-organic catalyst is enriched with Rh or Ag nanocrystals, the controlled photocatalytic CO2 reduction reactions generate formic acid and acetic acid. Achieving such a spongy nickel-organic photocatalyst is a critical step toward practical production of high-value multicarbon fuels using solar energy.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [7];  [1]; ORCiD logo [7]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [1]; ORCiD logo [2];  [1]
  1. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Nanyang Technological Univ. (Singapore); SinBeRISE (Singapore-Berkeley Research Initiative for Sustainable Energy) CREATE (Singapore)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of Science and Technology Beijing, Beijing (People's Republic of China)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  5. Brookhaven National Lab. (BNL), Upton, NY (United States)
  6. Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  8. Leiden Univ., Leiden (Netherlands)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1419436
Alternate Identifier(s):
OSTI ID: 1409644
Report Number(s):
BNL-114699-2017-JA
Journal ID: ISSN 2375-2548; ark:/13030/qt84194890
Grant/Contract Number:  
AC02-05CH11231; SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 3; Journal Issue: 7; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; CO2 reduction photocatalyst; Center for Functional Nanomaterials

Citation Formats

Niu, Kaiyang, Xu, You, Wang, Haicheng, Ye, Rong, Xin, Huolin L., Lin, Feng, Tian, Chixia, Lum, Yanwei, Bustillo, Karen C., Doeff, Marca M., Koper, Marc T. M., Ager, Joel, Xu, Rong, and Zheng, Haimei. A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production. United States: N. p., 2017. Web. doi:10.1126/sciadv.1700921.
Niu, Kaiyang, Xu, You, Wang, Haicheng, Ye, Rong, Xin, Huolin L., Lin, Feng, Tian, Chixia, Lum, Yanwei, Bustillo, Karen C., Doeff, Marca M., Koper, Marc T. M., Ager, Joel, Xu, Rong, & Zheng, Haimei. A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production. United States. doi:10.1126/sciadv.1700921.
Niu, Kaiyang, Xu, You, Wang, Haicheng, Ye, Rong, Xin, Huolin L., Lin, Feng, Tian, Chixia, Lum, Yanwei, Bustillo, Karen C., Doeff, Marca M., Koper, Marc T. M., Ager, Joel, Xu, Rong, and Zheng, Haimei. Fri . "A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production". United States. doi:10.1126/sciadv.1700921. https://www.osti.gov/servlets/purl/1419436.
@article{osti_1419436,
title = {A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production},
author = {Niu, Kaiyang and Xu, You and Wang, Haicheng and Ye, Rong and Xin, Huolin L. and Lin, Feng and Tian, Chixia and Lum, Yanwei and Bustillo, Karen C. and Doeff, Marca M. and Koper, Marc T. M. and Ager, Joel and Xu, Rong and Zheng, Haimei},
abstractNote = {Solar-driven photocatalytic conversion of CO2 into fuels has attracted a lot of interest; however, developing active catalysts that can selectively convert CO2 to fuels with desirable reaction products remains a grand challenge. For instance, complete suppression of the competing H2 evolution during photocatalytic CO2-to-CO conversion has not been achieved before. We design and synthesize a spongy nickel-organic heterogeneous photocatalyst via a photochemical route. The catalyst has a crystalline network architecture with a high concentration of defects. It is highly active in converting CO2 to CO, with a production rate of ~1.6 × 104 μmol hour–1 gSolar-driven photocatalytic conversion of CO2 into fuels has attracted a lot of interest; however, developing active catalysts that can selectively convert CO2 to fuels with desirable reaction products remains a grand challenge. For instance, complete suppression of the competing H2 evolution during photocatalytic CO2-to-CO conversion has not been achieved before. We design and synthesize a spongy nickel-organic heterogeneous photocatalyst via a photochemical route. The catalyst has a crystalline network architecture with a high concentration of defects. It is highly active in converting CO2 to CO, with a production rate of ~1.6 × 104 μmol hour–1 g–1. No measurable H2 is generated during the reaction, leading to nearly 100% selective CO production over H2 evolution. When the spongy Ni-organic catalyst is enriched with Rh or Ag nanocrystals, the controlled photocatalytic CO2 reduction reactions generate formic acid and acetic acid. Achieving such a spongy nickel-organic photocatalyst is a critical step toward practical production of high-value multicarbon fuels using solar energy. 1. No measurable H2 is generated during the reaction, leading to nearly 100% selective CO production over H2 evolution. When the spongy Ni-organic catalyst is enriched with Rh or Ag nanocrystals, the controlled photocatalytic CO2 reduction reactions generate formic acid and acetic acid. Achieving such a spongy nickel-organic photocatalyst is a critical step toward practical production of high-value multicarbon fuels using solar energy.},
doi = {10.1126/sciadv.1700921},
journal = {Science Advances},
number = 7,
volume = 3,
place = {United States},
year = {2017},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 25 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electrochemical Reduction of Carbon Dioxide at a Platinum Electrode in Acetonitrile-Water Mixtures
journal, January 2000

  • Tomita, Y.; Teruya, S.; Koga, O.
  • Journal of The Electrochemical Society, Vol. 147, Issue 11
  • DOI: 10.1149/1.1394035

CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films
journal, April 2012

  • Li, Christina W.; Kanan, Matthew W.
  • Journal of the American Chemical Society, Vol. 134, Issue 17, p. 7231-7234
  • DOI: 10.1021/ja3010978

Warming caused by cumulative carbon emissions towards the trillionth tonne
journal, April 2009

  • Allen, Myles R.; Frame, David J.; Huntingford, Chris
  • Nature, Vol. 458, Issue 7242
  • DOI: 10.1038/nature08019

Co 3 O 4 Hexagonal Platelets with Controllable Facets Enabling Highly Efficient Visible-Light Photocatalytic Reduction of CO 2
journal, May 2016


Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Conversion of CO 2 from Air into Methanol Using a Polyamine and a Homogeneous Ruthenium Catalyst
journal, January 2016

  • Kothandaraman, Jotheeswari; Goeppert, Alain; Czaun, Miklos
  • Journal of the American Chemical Society, Vol. 138, Issue 3
  • DOI: 10.1021/jacs.5b12354

The climate response to five trillion tonnes of carbon
journal, May 2016

  • Tokarska, Katarzyna B.; Gillett, Nathan P.; Weaver, Andrew J.
  • Nature Climate Change, Vol. 6, Issue 9
  • DOI: 10.1038/nclimate3036

Nature-Inspired, Highly Durable CO 2 Reduction System Consisting of a Binuclear Ruthenium(II) Complex and an Organic Semiconductor Using Visible Light
journal, April 2016

  • Kuriki, Ryo; Matsunaga, Hironori; Nakashima, Takuya
  • Journal of the American Chemical Society, Vol. 138, Issue 15
  • DOI: 10.1021/jacs.6b01997

Catalytic Aspects of Light-Induced Hydrogen Generation in Water with TiO2 and Other Photocatalysts: A Simple and Practical Way Towards a Normalization?
journal, January 2010

  • Maschmeyer, Thomas; Che, Michel
  • Angewandte Chemie International Edition, Vol. 49, Issue 9
  • DOI: 10.1002/anie.200903921

Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper
journal, April 2014

  • Li, Christina W.; Ciston, Jim; Kanan, Matthew W.
  • Nature, Vol. 508, Issue 7497
  • DOI: 10.1038/nature13249

Photocatalytic Reduction of Carbon Dioxide over Ag Cocatalyst-Loaded ALa 4 Ti 4 O 15 (A = Ca, Sr, and Ba) Using Water as a Reducing Reagent
journal, December 2011

  • Iizuka, Kosuke; Wato, Tomoaki; Miseki, Yugo
  • Journal of the American Chemical Society, Vol. 133, Issue 51
  • DOI: 10.1021/ja207586e

Synthesis and Structure Characterization of Copper Terephthalate Metal-Organic Frameworks
journal, June 2009

  • Carson, Cantwell G.; Hardcastle, Kenneth; Schwartz, Justin
  • European Journal of Inorganic Chemistry, Vol. 2009, Issue 16
  • DOI: 10.1002/ejic.200801224

CO2 photoreduction at enzyme-modified metal oxide nanoparticles
journal, January 2011

  • Woolerton, Thomas W.; Sheard, Sally; Pierce, Elizabeth
  • Energy & Environmental Science, Vol. 4, Issue 7
  • DOI: 10.1039/c0ee00780c

Development of a Stable MnCo 2 O 4 Cocatalyst for Photocatalytic CO 2 Reduction with Visible Light
journal, February 2015

  • Wang, Sibo; Hou, Yidong; Wang, Xinchen
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 7
  • DOI: 10.1021/am508766s

Accelerating extinction risk from climate change
journal, April 2015


Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces
journal, August 2014

  • Kuhl, Kendra P.; Hatsukade, Toru; Cave, Etosha R.
  • Journal of the American Chemical Society, Vol. 136, Issue 40
  • DOI: 10.1021/ja505791r

Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K
journal, February 2017

  • Cheng, Tao; Xiao, Hai; Goddard, William A.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 8
  • DOI: 10.1073/pnas.1612106114

The teraton challenge. A review of fixation and transformation of carbon dioxide
journal, January 2010

  • Mikkelsen, Mette; Jørgensen, Mikkel; Krebs, Frederik C.
  • Energy Environ. Sci., Vol. 3, Issue 1
  • DOI: 10.1039/B912904A

Characterizing loss and damage from climate change
journal, October 2014

  • James, Rachel; Otto, Friederike; Parker, Hannah
  • Nature Climate Change, Vol. 4, Issue 11
  • DOI: 10.1038/nclimate2411

Climate Change Impacts on Global Food Security
journal, August 2013


Visible-Light-Driven CO 2 Reduction with Carbon Nitride: Enhancing the Activity of Ruthenium Catalysts
journal, January 2015

  • Kuriki, Ryo; Sekizawa, Keita; Ishitani, Osamu
  • Angewandte Chemie International Edition, Vol. 54, Issue 8
  • DOI: 10.1002/anie.201411170

Tuning the structure and function of metal–organic frameworks via linker design
journal, January 2014

  • Lu, Weigang; Wei, Zhangwen; Gu, Zhi-Yuan
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00003J

In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+
journal, August 2008


Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans
journal, July 2004


Energy's Tricky Tradeoffs
journal, August 2010


Covalent organic frameworks comprising cobalt porphyrins for catalytic CO 2 reduction in water
journal, August 2015


Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels
journal, October 2015

  • Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 45
  • DOI: 10.1073/pnas.1519212112

Photocatalytic CO 2 Reduction Using Cu(I) Photosensitizers with a Fe(II) Catalyst
journal, March 2016

  • Takeda, Hiroyuki; Ohashi, Kenji; Sekine, Akiko
  • Journal of the American Chemical Society, Vol. 138, Issue 13
  • DOI: 10.1021/jacs.6b01970

Why Capture CO2 from the Atmosphere?
journal, September 2009


Photocatalytic CO 2 reduction by CdS promoted with a zeolitic imidazolate framework
journal, January 2015


Visible-Light-Induced Selective CO 2 Reduction Utilizing a Ruthenium Complex Electrocatalyst Linked to a p-Type Nitrogen-Doped Ta 2 O 5 Semiconductor
journal, June 2010

  • Sato, Shunsuke; Morikawa, Takeshi; Saeki, Shu
  • Angewandte Chemie International Edition, Vol. 49, Issue 30
  • DOI: 10.1002/anie.201000613

Inhibited proton transfer enhances Au-catalyzed CO 2 -to-fuels selectivity
journal, July 2016

  • Wuttig, Anna; Yaguchi, Momo; Motobayashi, Kenta
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 32
  • DOI: 10.1073/pnas.1602984113

Studies of the pH dependence of carbon-13 shifts and carbon-carbon coupling constants of [U-13C]aspartic and -glutamic acids
journal, June 1978

  • London, Robert E.; Walker, Thomas E.; Kollman, Victor H.
  • Journal of the American Chemical Society, Vol. 100, Issue 12
  • DOI: 10.1021/ja00480a012

Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts
journal, September 2014


Carbon Dioxide Capture in Metal–Organic Frameworks
journal, September 2011

  • Sumida, Kenji; Rogow, David L.; Mason, Jarad A.
  • Chemical Reviews, Vol. 112, Issue 2, p. 724-781
  • DOI: 10.1021/cr2003272

Hydrogen Generation by Visible Light Irradiation of Aqueous Solutions of Metal Complexes. An approach to the photochemical conversion and storage of solar energy
journal, June 1979

  • Kirch, Michele; Lehn, Jean-Marie; Sauvage, Jean-Pierre
  • Helvetica Chimica Acta, Vol. 62, Issue 4
  • DOI: 10.1002/hlca.19790620449

A stable ZnCo 2 O 4 cocatalyst for photocatalytic CO 2 reduction
journal, January 2015

  • Wang, Sibo; Ding, Zhengxin; Wang, Xinchen
  • Chemical Communications, Vol. 51, Issue 8
  • DOI: 10.1039/C4CC07225A

Photocatalytic Reduction of CO 2 on TiO 2 and Other Semiconductors
journal, June 2013

  • Habisreutinger, Severin N.; Schmidt-Mende, Lukas; Stolarczyk, Jacek K.
  • Angewandte Chemie International Edition, Vol. 52, Issue 29
  • DOI: 10.1002/anie.201207199

The velocity of climate change
journal, December 2009

  • Loarie, Scott R.; Duffy, Philip B.; Hamilton, Healy
  • Nature, Vol. 462, Issue 7276
  • DOI: 10.1038/nature08649

Tailoring Copper Nanocrystals towards C 2 Products in Electrochemical CO 2 Reduction
journal, April 2016

  • Loiudice, Anna; Lobaccaro, Peter; Kamali, Esmail A.
  • Angewandte Chemie International Edition, Vol. 55, Issue 19
  • DOI: 10.1002/anie.201601582

Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin
journal, September 2015

  • Shen, Jing; Kortlever, Ruud; Kas, Recep
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9177

Cobalt Imidazolate Metal-Organic Frameworks Photosplit CO 2 under Mild Reaction Conditions
journal, December 2013

  • Wang, Sibo; Yao, Wangshu; Lin, Jinliang
  • Angewandte Chemie International Edition, Vol. 53, Issue 4
  • DOI: 10.1002/anie.201309426

Low-temperature oxidation of CO catalysed by Co3O4 nanorods
journal, April 2009

  • Xie, Xiaowei; Li, Yong; Liu, Zhi-Quan
  • Nature, Vol. 458, Issue 7239, p. 746-749
  • DOI: 10.1038/nature07877

Future temperature in southwest Asia projected to exceed a threshold for human adaptability
journal, October 2015

  • Pal, Jeremy S.; Eltahir, Elfatih A. B.
  • Nature Climate Change, Vol. 6, Issue 2
  • DOI: 10.1038/nclimate2833

Light-Driven Hydrogen Generation: Efficient Iron-Based Water Reduction Catalysts
journal, December 2009

  • Gärtner, Felix; Sundararaju, Basker; Surkus, Annette-Enrica
  • Angewandte Chemie International Edition, Vol. 48, Issue 52
  • DOI: 10.1002/anie.200905115

Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes
journal, August 2015


Future CO 2 Emissions and Climate Change from Existing Energy Infrastructure
journal, September 2010


New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces
journal, January 2012

  • Kuhl, Kendra P.; Cave, Etosha R.; Abram, David N.
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee21234j

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Importance of trivalency and the eg1 configuration in the photocatalytic oxidation of water by Mn and Co oxides
journal, July 2013

  • Maitra, U.; Naidu, B. S.; Govindaraj, A.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 29
  • DOI: 10.1073/pnas.1310703110

Research opportunities to advance solar energy utilization
journal, January 2016


Photocatalytic CO 2 reduction using a Mn complex as a catalyst
journal, January 2014

  • Takeda, Hiroyuki; Koizumi, Hiroki; Okamoto, Kouhei
  • Chem. Commun., Vol. 50, Issue 12
  • DOI: 10.1039/C3CC48122K

A Langmuir-like desorption model for reflecting the inhomogeneous pore structure of coal and its experimental verification
journal, January 2015

  • Jiang, Haina; Cheng, Yuanping; Yuan, Liang
  • RSC Advances, Vol. 5, Issue 4
  • DOI: 10.1039/C4RA08620A

    Works referencing / citing this record:

    Highly Selective Photoreduction of CO 2 with Suppressing H 2 Evolution over Monolayer Layered Double Hydroxide under Irradiation above 600 nm
    journal, July 2019

    • Tan, Ling; Xu, Si-Min; Wang, Zelin
    • Angewandte Chemie International Edition, Vol. 58, Issue 34
    • DOI: 10.1002/anie.201904246

    Highly Selective Photoreduction of CO 2 with Suppressing H 2 Evolution over Monolayer Layered Double Hydroxide under Irradiation above 600 nm
    journal, July 2019

    • Tan, Ling; Xu, Si-Min; Wang, Zelin
    • Angewandte Chemie International Edition, Vol. 58, Issue 34
    • DOI: 10.1002/anie.201904246