DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Shaler: in situ analysis of a fluvial sedimentary deposit on Mars

Abstract

This article characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification to determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution and bedform migration direction, this study concludes that the Shaler outcrop probably records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the north-east, across the surface of a bar that migrated south-east. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolianmore » reworking and the presence of potential desiccation cracks within the outcrop suggest that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.« less

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [1];  [6];  [7];  [8];  [9];  [6];  [10];  [11];  [8];  [12];  [13];  [14];  [9];  [15];  [16] more »;  [17];  [18];  [19]; ORCiD logo [20];  [14]; ORCiD logo [21] « less
  1. U.S. Geological Survey, Flagstaff, AZ (United States). Astrogeology Science Center
  2. Imperial College, London (United Kingdom). Dept. of Earth Science and Engineering
  3. Univ. of California, Santa Cruz, CA (United States). Dept. of Earth & Planetary Sciences
  4. Johns Hopkins Univ., Baltimore, MD (United States). Department of Earth and Planetary Sciences
  5. Univ. of Texas, Austin, TX (United States). Jackson School of Geosciences, Dept. of Geological Sciences
  6. Arizona State Univ., Tempe, AZ (United States). School of Earth and Space Exploration
  7. Univ. de Lyon, Lyon (France). Lab. de Geologie de Lyon
  8. Malin Space Science Systems, San Diego, CA (United States)
  9. California Inst. of Technology (CalTech), Pasadena, CA (United States). Division of Geological and Planetary Sciences
  10. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Earth and Planetary Sciences
  11. McGill Univ., Montreal, QC (Canada). Dept. of Earth & Planetary Sciences
  12. Univ. de Nantes, Nantes (France). Laboratoire de Planetologie et Geodynamique
  13. Brown Univ., Providence, RI (United States). Dept. of Geological Sciences
  14. Planetary Science Inst., Tucson, AZ (United States)
  15. Western Washington Univ., Bellingham, WA (United States). College of Science and Engineering
  16. Univ. of Hawaii at Manoa, Honolulu, HI (United States). School of Ocean and Earth Science and Technology
  17. Indiana Univ., Bloomington, IN (United States). Dept. of Geological Sciences
  18. California Inst. of Technology (CalTech), La Canada Flintridge, CA (United States). Jet Propulsion Lab.
  19. Univ. of California, Davis, CA (United States). Earth and Planetary Sciences
  20. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  21. Towson Univ., Towson, MD (United States). Dept. of Physics, Astronomy and Geosciences
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
National Aeronautics and Space Administration (NASA); USDOE; UK Space Agency (UKSA); Science and Technology Funding Council (STFC)
OSTI Identifier:
1412899
Report Number(s):
LA-UR-17-27688
Journal ID: ISSN 0037-0746
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Sedimentology
Additional Journal Information:
Journal Volume: 65; Journal Issue: 1; Journal ID: ISSN 0037-0746
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; Planetary Sciences

Citation Formats

Edgar, Lauren A., Gupta, Sanjeev, Rubin, David M., Lewis, Kevin W., Kocurek, Gary A., Anderson, Ryan B., Bell, James F., Dromart, Gilles, Edgett, Kenneth S., Grotzinger, John P., Hardgrove, Craig, Kah, Linda C., Leveille, Richard, Malin, Michael C., Mangold, Nicolas, Milliken, Ralph E., Minitti, Michelle, Palucis, Marisa, Rice, Melissa, Rowland, Scott K., Schieber, Juergen, Stack, Kathryn M., Sumner, Dawn Y., Wiens, Roger C., Williams, Rebecca M. E., and Williams, Amy J. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars. United States: N. p., 2017. Web. doi:10.1111/sed.12370.
Edgar, Lauren A., Gupta, Sanjeev, Rubin, David M., Lewis, Kevin W., Kocurek, Gary A., Anderson, Ryan B., Bell, James F., Dromart, Gilles, Edgett, Kenneth S., Grotzinger, John P., Hardgrove, Craig, Kah, Linda C., Leveille, Richard, Malin, Michael C., Mangold, Nicolas, Milliken, Ralph E., Minitti, Michelle, Palucis, Marisa, Rice, Melissa, Rowland, Scott K., Schieber, Juergen, Stack, Kathryn M., Sumner, Dawn Y., Wiens, Roger C., Williams, Rebecca M. E., & Williams, Amy J. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars. United States. https://doi.org/10.1111/sed.12370
Edgar, Lauren A., Gupta, Sanjeev, Rubin, David M., Lewis, Kevin W., Kocurek, Gary A., Anderson, Ryan B., Bell, James F., Dromart, Gilles, Edgett, Kenneth S., Grotzinger, John P., Hardgrove, Craig, Kah, Linda C., Leveille, Richard, Malin, Michael C., Mangold, Nicolas, Milliken, Ralph E., Minitti, Michelle, Palucis, Marisa, Rice, Melissa, Rowland, Scott K., Schieber, Juergen, Stack, Kathryn M., Sumner, Dawn Y., Wiens, Roger C., Williams, Rebecca M. E., and Williams, Amy J. Thu . "Shaler: in situ analysis of a fluvial sedimentary deposit on Mars". United States. https://doi.org/10.1111/sed.12370. https://www.osti.gov/servlets/purl/1412899.
@article{osti_1412899,
title = {Shaler: in situ analysis of a fluvial sedimentary deposit on Mars},
author = {Edgar, Lauren A. and Gupta, Sanjeev and Rubin, David M. and Lewis, Kevin W. and Kocurek, Gary A. and Anderson, Ryan B. and Bell, James F. and Dromart, Gilles and Edgett, Kenneth S. and Grotzinger, John P. and Hardgrove, Craig and Kah, Linda C. and Leveille, Richard and Malin, Michael C. and Mangold, Nicolas and Milliken, Ralph E. and Minitti, Michelle and Palucis, Marisa and Rice, Melissa and Rowland, Scott K. and Schieber, Juergen and Stack, Kathryn M. and Sumner, Dawn Y. and Wiens, Roger C. and Williams, Rebecca M. E. and Williams, Amy J.},
abstractNote = {This article characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification to determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution and bedform migration direction, this study concludes that the Shaler outcrop probably records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the north-east, across the surface of a bar that migrated south-east. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggest that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.},
doi = {10.1111/sed.12370},
journal = {Sedimentology},
number = 1,
volume = 65,
place = {United States},
year = {Thu Mar 09 00:00:00 EST 2017},
month = {Thu Mar 09 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 57 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

ChemCam results from the Shaler outcrop in Gale crater, Mars
journal, March 2015


Fluvial geomorphology on Earth-like planetary surfaces: A review
journal, September 2015


Inverted fluvial features in the Aeolis/Zephyria Plana region, Mars: Formation mechanism and initial paleodischarge estimates
journal, January 2010

  • Burr, Devon M.; Williams, Rebecca M. E.; Wendell, Kimberly D.
  • Journal of Geophysical Research, Vol. 115, Issue E7
  • DOI: 10.1029/2009JE003496

Hydrogeologic Evolution of Gale Crater and Its Relevance to the Exobiological Exploration of Mars
journal, June 1999

  • Cabrol, Nathalie A.; Grin, Edmond A.; Newsom, Horton E.
  • Icarus, Vol. 139, Issue 2
  • DOI: 10.1006/icar.1999.6099

Geologic history of Mars
journal, June 2010


Deltaic deposits at Aeolis Dorsa: Sedimentary evidence for a standing body of water on the northern plains of Mars: DELTAIC DEPOSITS AT AEOLIS DORSA
journal, June 2013

  • DiBiase, Roman A.; Limaye, Ajay B.; Scheingross, Joel S.
  • Journal of Geophysical Research: Planets, Vol. 118, Issue 6
  • DOI: 10.1002/jgre.20100

Curiosity’s Mars Hand Lens Imager (MAHLI) Investigation
journal, July 2012

  • Edgett, Kenneth S.; Yingst, R. Aileen; Ravine, Michael A.
  • Space Science Reviews, Vol. 170, Issue 1-4
  • DOI: 10.1007/s11214-012-9910-4

Unconfined flow deposits in distal sectors of fluvial distributary systems: Examples from the Miocene Luna and Huesca Systems, northern Spain
journal, February 2007


Pin stripe lamination: A distinctive feature of modern and ancient eolian sediments
journal, March 1988


Mechanisms and timescales of fluvial activity at Mojave and other young Martian craters
journal, March 2014

  • Goddard, Kate; Warner, Nicholas H.; Gupta, Sanjeev
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 3
  • DOI: 10.1002/2013JE004564

The timing of alluvial activity in Gale crater, Mars
journal, February 2014

  • Grant, John A.; Wilson, Sharon A.; Mangold, Nicolas
  • Geophysical Research Letters, Vol. 41, Issue 4
  • DOI: 10.1002/2013GL058909

Mars Sedimentary Geology: Key Concepts and Outstanding Questions
journal, January 2011

  • Grotzinger, John; Beaty, David; Dromart, Gilles
  • Astrobiology, Vol. 11, Issue 1
  • DOI: 10.1089/ast.2010.0571

Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars
journal, October 2015


A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars
journal, December 2013


On the possibility of liquid water on present-day Mars
journal, October 2001

  • Haberle, Robert M.; McKay, Christopher P.; Schaeffer, James
  • Journal of Geophysical Research: Planets, Vol. 106, Issue E10
  • DOI: 10.1029/2000JE001360

Back-flow ripples in troughs downstream of unit bars: Formation, preservation and value for interpreting flow conditions
journal, April 2015

  • Herbert, Christopher M.; Alexander, Jan; Martínez de Álvaro, María J.
  • Sedimentology, Vol. 62, Issue 7
  • DOI: 10.1111/sed.12203

Basic types of stratification in small eolian dunes
journal, June 1977


Planview style and palaeodrainage of Torridonian channel belts: Applecross Formation, Stoer Peninsula, Scotland
journal, July 2015


An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development
journal, January 2005

  • Irwin, Rossman P.; Howard, Alan D.; Craddock, Robert A.
  • Journal of Geophysical Research, Vol. 110, Issue E12
  • DOI: 10.1029/2005JE002460

Stratigraphy of Aeolis Dorsa, Mars: Stratigraphic context of the great river deposits
journal, June 2015


The ChemCam Remote Micro-Imager at Gale crater: Review of the first year of operations on Mars
journal, March 2015


The Mars Science Laboratory Engineering Cameras
journal, May 2012


Evidence for Persistent Flow and Aqueous Sedimentation on Early Mars
journal, December 2003


Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars
journal, March 2015

  • Mangold, N.; Forni, O.; Dromart, G.
  • Journal of Geophysical Research: Planets, Vol. 120, Issue 3
  • DOI: 10.1002/2014JE004681

The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description
journal, July 2012


Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars
journal, December 2013


Large alluvial fans on Mars
journal, January 2005


Identifying triggers for liquefaction-induced soft-sediment deformation in sands
journal, April 2011


Soft-sediment deformation in a pre-vegetation river system: the Neoproterozoic Torridonian of NW Scotland
journal, December 2014


Recognising triggers for soft-sediment deformation: Current understanding and future directions
journal, April 2011


The origin and evolution of the Peace Vallis fan system that drains to the Curiosity landing area, Gale Crater, Mars : Origin and evolution of Peace Vallis fan
journal, April 2014

  • Palucis, Marisa C.; Dietrich, William E.; Hayes, Alexander G.
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 4
  • DOI: 10.1002/2013JE004583

Estimates of the wind speeds required for particle motion on Mars
journal, November 1976


Influence of fault-controlled topography on fluvio-deltaic sedimentary systems in Eberswalde crater, Mars: SEDIMENTARY SYSTEMS IN EBERSWALDE CRATER
journal, August 2011

  • Rice, Melissa S.; Gupta, Sanjeev; Bell, James F.
  • Geophysical Research Letters, Vol. 38, Issue 16
  • DOI: 10.1029/2011GL048149

Encounters with an unearthly mudstone: Understanding the first mudstone found on Mars
journal, November 2016

  • Schieber, Juergen; Bish, David; Coleman, Max
  • Sedimentology, Vol. 64, Issue 2
  • DOI: 10.1111/sed.12318

Preservation of Martian Organic and Environmental Records: Final Report of the Mars Biosignature Working Group
journal, March 2011

  • Summons, Roger E.; Amend, Jan P.; Bish, David
  • Astrobiology, Vol. 11, Issue 2
  • DOI: 10.1089/ast.2010.0506

Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data
journal, August 2011


Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars
journal, December 2013


Overview of the Mars Science Laboratory mission: Bradbury Landing to Yellowknife Bay and beyond: MARS SCIENCE LABORATORY MISSION OVERVIEW
journal, June 2014

  • Vasavada, A. R.; Grotzinger, J. P.; Arvidson, R. E.
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 6
  • DOI: 10.1002/2014JE004622

The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests
journal, June 2012

  • Wiens, Roger C.; Maurice, Sylvestre; Barraclough, Bruce
  • Space Science Reviews, Vol. 170, Issue 1-4
  • DOI: 10.1007/s11214-012-9902-4

Martian Fluvial Conglomerates at Gale Crater
journal, May 2013

  • Williams, R. M. E.; Grotzinger, J. P.; Dietrich, W. E.
  • Science, Vol. 340, Issue 6136
  • DOI: 10.1126/science.1237317

Works referencing / citing this record:

A Diverse Array of Fluvial Depositional Systems in Arabia Terra: Evidence for mid‐Noachian to Early Hesperian Rivers on Mars
journal, July 2019

  • Davis, Joel M.; Gupta, Sanjeev; Balme, Matthew
  • Journal of Geophysical Research: Planets, Vol. 124, Issue 7
  • DOI: 10.1029/2019je005976

Extensive Polygonal Fracture Network in Siccar Point group Strata: Fracture Mechanisms and Implications for Fluid Circulation in Gale Crater, Mars
journal, October 2019

  • Kronyak, R. E.; Kah, L. C.; Miklusicak, N. B.
  • Journal of Geophysical Research: Planets, Vol. 124, Issue 10
  • DOI: 10.1029/2019je006125

The potential science and engineering value of samples delivered to Earth by Mars sample return: International MSR Objectives and Samples Team (iMOST)
journal, March 2019

  • Beaty, D. W.; Grady, M. M.; McSween, H. Y.
  • Meteoritics & Planetary Science, Vol. 54
  • DOI: 10.1111/maps.13242

Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale crater, Mars
journal, April 2018

  • Banham, Steven G.; Gupta, Sanjeev; Rubin, David M.
  • Sedimentology, Vol. 65, Issue 4
  • DOI: 10.1111/sed.12469

The potential science and engineering value of samples delivered to Earth by Mars sample return
journal, March 2019

  • Beaty, D. W.; Grady, M. M.; McSween, H. Y.
  • Meteoritics & Planetary Science, Vol. 54, Issue 3
  • DOI: 10.1111/maps.13232

The potential science and engineering value of samples delivered to Earth by Mars sample return
text, January 2019

  • (Imost), International MSR Objectives And Samples Team; Beaty, David W.; Grady, Monica M.
  • ETH Zurich
  • DOI: 10.3929/ethz-b-000332454