skip to main content

DOE PAGESDOE PAGES

Title: Modeling the mechanical properties of ultra-thin polymer films [Structural modeling of films of atomic scale thickness]

A modeling method to extract the mechanical properties of ultra-thin films (10–100 nm thick) from experimental data generated by indentation of freestanding circular films using a spherical indenter is presented. The relationship between the mechanical properties of the film and experimental parameters including load, and deflection are discussed in the context of a constitutive material model, test variables, and analytical approaches. As a result, elastic and plastic regimes are identified by comparison of finite element simulation and experimental data.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Report Number(s):
LLNL-JRNL-701818
Journal ID: ISSN 2095-4719; applab; TRN: US1800275
Grant/Contract Number:
AC52-07NA27344
Type:
Accepted Manuscript
Journal Name:
High Power Laser Science and Engineering
Additional Journal Information:
Journal Volume: 5; Journal ID: ISSN 2095-4719
Publisher:
Cambridge University Press
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 36 MATERIALS SCIENCE; ultra-thin films; indentation; optimization
OSTI Identifier:
1411688