DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of Chain Rigidity on the Decoupling of Ion Motion from Segmental Relaxation in Polymerized Ionic Liquids: Ambient and Elevated Pressure Studies

Abstract

Conductivity in polymer electrolytes has been generally discussed with the assumption that the segmental motions control charge transport. However, much less attention has been paid to the mechanism of ion conductivity where the motions of ions are less dependent (decoupled) on segmental dynamics. We present that this phenomenon is observed in ionic materials as they approach their glass transition temperature and becomes essential for design and development of highly conducting solid polymer electrolytes. In this paper, we study the effect of chain rigidity on the decoupling of ion transport from segmental motion in three polymerized ionic liquids (polyILs) containing the same cation–anion pair but differing in flexibility of the polymer backbones and side groups. Analysis of dielectric and rheology data reveals that decoupling is strong in vinyl-based rigid polymers while almost negligible in novel siloxane-based flexible polyILs. To explain this behavior, we investigated ion and chain dynamics at ambient and elevated pressure. Our results suggest that decoupling has a direct relationship to the frustration in chain packing and free volume. Finally, these conclusions are also supported by coarse-grained molecular dynamics simulations.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3]; ORCiD logo [1];  [2]; ORCiD logo [4];  [2];  [1]; ORCiD logo [1]; ORCiD logo [2];  [5]; ORCiD logo [6]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
  2. Univ. of Tennessee, Knoxville, TN (United States). Department of Chemistry
  3. Univ. of Cincinnati, OH (United States). Department of Aerospace Engineering & Engineering Mechanics
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences and Computational Sciences & Engineering Division
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Univ. of Tennessee, Knoxville, TN (United States). Department of Chemistry
  6. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Univ. of Tennessee, Knoxville, TN (United States). Department of Chemistry and Department of Physics and Astronomy
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1394356
Alternate Identifier(s):
OSTI ID: 1408579
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Macromolecules
Additional Journal Information:
Journal Volume: 50; Journal Issue: 17; Journal ID: ISSN 0024-9297
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Wojnarowska, Zaneta, Feng, Hongbo, Fu, Yao, Cheng, Shiwang, Carroll, Bobby, Kumar, Rajeev, Novikov, Vladimir N., Kisliuk, Alexander M., Saito, Tomonori, Kang, Nam-Goo, Mays, Jimmy W., Sokolov, Alexei P., and Bocharova, Vera. Effect of Chain Rigidity on the Decoupling of Ion Motion from Segmental Relaxation in Polymerized Ionic Liquids: Ambient and Elevated Pressure Studies. United States: N. p., 2017. Web. doi:10.1021/acs.macromol.7b01217.
Wojnarowska, Zaneta, Feng, Hongbo, Fu, Yao, Cheng, Shiwang, Carroll, Bobby, Kumar, Rajeev, Novikov, Vladimir N., Kisliuk, Alexander M., Saito, Tomonori, Kang, Nam-Goo, Mays, Jimmy W., Sokolov, Alexei P., & Bocharova, Vera. Effect of Chain Rigidity on the Decoupling of Ion Motion from Segmental Relaxation in Polymerized Ionic Liquids: Ambient and Elevated Pressure Studies. United States. https://doi.org/10.1021/acs.macromol.7b01217
Wojnarowska, Zaneta, Feng, Hongbo, Fu, Yao, Cheng, Shiwang, Carroll, Bobby, Kumar, Rajeev, Novikov, Vladimir N., Kisliuk, Alexander M., Saito, Tomonori, Kang, Nam-Goo, Mays, Jimmy W., Sokolov, Alexei P., and Bocharova, Vera. Mon . "Effect of Chain Rigidity on the Decoupling of Ion Motion from Segmental Relaxation in Polymerized Ionic Liquids: Ambient and Elevated Pressure Studies". United States. https://doi.org/10.1021/acs.macromol.7b01217. https://www.osti.gov/servlets/purl/1394356.
@article{osti_1394356,
title = {Effect of Chain Rigidity on the Decoupling of Ion Motion from Segmental Relaxation in Polymerized Ionic Liquids: Ambient and Elevated Pressure Studies},
author = {Wojnarowska, Zaneta and Feng, Hongbo and Fu, Yao and Cheng, Shiwang and Carroll, Bobby and Kumar, Rajeev and Novikov, Vladimir N. and Kisliuk, Alexander M. and Saito, Tomonori and Kang, Nam-Goo and Mays, Jimmy W. and Sokolov, Alexei P. and Bocharova, Vera},
abstractNote = {Conductivity in polymer electrolytes has been generally discussed with the assumption that the segmental motions control charge transport. However, much less attention has been paid to the mechanism of ion conductivity where the motions of ions are less dependent (decoupled) on segmental dynamics. We present that this phenomenon is observed in ionic materials as they approach their glass transition temperature and becomes essential for design and development of highly conducting solid polymer electrolytes. In this paper, we study the effect of chain rigidity on the decoupling of ion transport from segmental motion in three polymerized ionic liquids (polyILs) containing the same cation–anion pair but differing in flexibility of the polymer backbones and side groups. Analysis of dielectric and rheology data reveals that decoupling is strong in vinyl-based rigid polymers while almost negligible in novel siloxane-based flexible polyILs. To explain this behavior, we investigated ion and chain dynamics at ambient and elevated pressure. Our results suggest that decoupling has a direct relationship to the frustration in chain packing and free volume. Finally, these conclusions are also supported by coarse-grained molecular dynamics simulations.},
doi = {10.1021/acs.macromol.7b01217},
journal = {Macromolecules},
number = 17,
volume = 50,
place = {United States},
year = {Mon Aug 21 00:00:00 EDT 2017},
month = {Mon Aug 21 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 73 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Polymer Electrolytes for Lithium-Ion Batteries
journal, April 1998


Polymer Electrolytes
journal, July 2013


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Polymer Electrolytes: The Key to Lithium Polymer Batteries
journal, March 2000


Recent advances in rechargeable battery materials: a chemist’s perspective
journal, January 2009

  • Palacín, M. Rosa
  • Chemical Society Reviews, Vol. 38, Issue 9
  • DOI: 10.1039/b820555h

Poly(ionic liquid)s: An update
journal, July 2013


Effect of cation structure on the electrochemical and thermal properties of ion conductive polymers obtained from polymerizable ionic liquids
journal, March 2006


Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids
journal, January 2014

  • Sangoro, J. R.; Iacob, C.; Agapov, A. L.
  • Soft Matter, Vol. 10, Issue 20
  • DOI: 10.1039/C3SM53202J

Effect of Confinement on Polymer Segmental Motion and Ion Mobility in PEO/Layered Silicate Nanocomposites
journal, August 2006

  • Elmahdy, M. M.; Chrissopoulou, K.; Afratis, A.
  • Macromolecules, Vol. 39, Issue 16
  • DOI: 10.1021/ma0608368

Cationic and dicationic 1,2,3-triazolium-based poly(ethylene glycol ionic liquid)s
journal, January 2017

  • Obadia, Mona M.; Jourdain, Antoine; Serghei, Anatoli
  • Polymer Chemistry, Vol. 8, Issue 5
  • DOI: 10.1039/C6PY02030E

Ion Transport in Glassy Polymer Electrolytes
journal, May 1999

  • Imrie, C. T.; Ingram, M. D.; McHattie, G. S.
  • The Journal of Physical Chemistry B, Vol. 103, Issue 20
  • DOI: 10.1021/jp983968e

Design of superionic polymers—New insights from Walden plot analysis
journal, September 2014


Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes
journal, August 2014


Fast ion motion in glassy and amorphous materials
journal, December 1983


Recent progress on dielectric properties of protic ionic liquids
journal, January 2015


Relationship between Ionic Mobility and Segmental Mobility in Polymers in the Liquid State
journal, September 1972


Decoupling of Ionic Transport from Segmental Relaxation in Polymer Electrolytes
journal, February 2012


Decoupling Ionic Conductivity from Structural Relaxation: A Way to Solid Polymer Electrolytes?
journal, June 2011

  • Agapov, A. L.; Sokolov, A. P.
  • Macromolecules, Vol. 44, Issue 11
  • DOI: 10.1021/ma2001096

On the Decoupling of Relaxation Modes in a Molecular Liquid Caused by Isothermal Introduction of 2 nm Structural Inhomogeneities
journal, December 2011

  • Ueno, Kazuhide; Angell, C. Austen
  • The Journal of Physical Chemistry B, Vol. 115, Issue 48
  • DOI: 10.1021/jp111398r

Free volume and conductivity in polymer electrolytes
journal, June 2005


Alkyl-Substituted N-Vinylimidazolium Polymerized Ionic Liquids: Thermal Properties and Ionic Conductivities
journal, October 2011

  • Green, Matthew D.; Salas-de la Cruz, David; Ye, Yuesheng
  • Macromolecular Chemistry and Physics, Vol. 212, Issue 23
  • DOI: 10.1002/macp.201100389

Optimizing the electrochemical performance of imidazolium-based polymeric ionic liquids by varying tethering groups
journal, March 2015

  • Jia, Zhe; Yuan, Wen; Sheng, Chunjuan
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 53, Issue 11
  • DOI: 10.1002/pola.27567

Dynamics of entangled linear polymer melts:  A molecular‐dynamics simulation
journal, April 1990

  • Kremer, Kurt; Grest, Gary S.
  • The Journal of Chemical Physics, Vol. 92, Issue 8
  • DOI: 10.1063/1.458541

Molecular dynamics simulation of microstructure and counterion transport in dry ionic heteropolymers
journal, April 2002

  • Wong, Chee; Clarke, Julian H. R.
  • The Journal of Chemical Physics, Vol. 116, Issue 15
  • DOI: 10.1063/1.1461356

Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement
journal, January 2011

  • Liu, Jun; Wu, Sizhu; Zhang, Liqun
  • Phys. Chem. Chem. Phys., Vol. 13, Issue 2
  • DOI: 10.1039/C0CP00297F

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: Characteristic frequencies and scaling laws
journal, May 2015

  • Samet, M.; Levchenko, V.; Boiteux, G.
  • The Journal of Chemical Physics, Vol. 142, Issue 19
  • DOI: 10.1063/1.4919877

A Rayleighian approach for modeling kinetics of ionic transport in polymeric media
journal, February 2017

  • Kumar, Rajeev; Mahalik, Jyoti P.; Bocharova, Vera
  • The Journal of Chemical Physics, Vol. 146, Issue 6
  • DOI: 10.1063/1.4975309

Dielectric and Viscoelastic Responses of Imidazolium-Based Ionomers with Different Counterions and Side Chain Lengths
journal, January 2014

  • Choi, U. Hyeok; Ye, Yuesheng; Salas de la Cruz, David
  • Macromolecules, Vol. 47, Issue 2
  • DOI: 10.1021/ma402263y

Heterogeneous Dynamics of Prototypical Ionic Glass CKN Monitored by Physical Aging
journal, January 2013


Molecular Origin of Enhanced Proton Conductivity in Anhydrous Ionic Systems
journal, January 2015

  • Wojnarowska, Zaneta; Paluch, Krzysztof J.; Shoifet, Evgeni
  • Journal of the American Chemical Society, Vol. 137, Issue 3
  • DOI: 10.1021/ja5103458

High Ion Content Siloxane Phosphonium Ionomers with Very Low T g
journal, June 2014

  • Liang, Siwei; O’Reilly, Michael V.; Choi, U. Hyeok
  • Macromolecules, Vol. 47, Issue 13
  • DOI: 10.1021/ma5001546

Enhanced Ionic Conductivity of a 1,2,3-Triazolium-Based Poly(siloxane ionic liquid) Homopolymer
journal, October 2016


Why many polymers are so fragile
journal, April 2007


Role of Chemical Structure in Fragility of Polymers: A Qualitative Picture
journal, October 2008

  • Kunal, Kumar; Robertson, Christopher G.; Pawlus, Sebastian
  • Macromolecules, Vol. 41, Issue 19, p. 7232-7238
  • DOI: 10.1021/ma801155c

Effects of backbone rigidity on the local structure and dynamics in polymer melts and glasses
journal, January 2013

  • Kumar, Rajeev; Goswami, Monojoy; Sumpter, Bobby G.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 13
  • DOI: 10.1039/c3cp43737j

Effect of Pressure on Decoupling of Ionic Conductivity from Segmental Dynamics in Polymerized Ionic Liquids
journal, November 2015


Conductivity Mechanism in Polymerized Imidazolium-Based Protic Ionic Liquid [HSO 3 –BVIm][OTf]: Dielectric Relaxation Studies
journal, June 2014

  • Wojnarowska, Z.; Knapik, J.; Díaz, M.
  • Macromolecules, Vol. 47, Issue 12
  • DOI: 10.1021/ma5003479

Ion Conduction in Polymerized Ionic Liquids with Different Pendant Groups
journal, June 2015


Molecular Volume Effects on the Dynamics of Polymerized Ionic Liquids and their Monomers
journal, September 2015


Highly decoupled ionic and protonic solid electrolyte systems, in relation to other relaxing systems and their energy landscapes
journal, November 2006


Anhydrous Superprotonic Polymer by Superacid Protonation of Cross-linked (PNCl 2 ) n
journal, January 2013

  • Ansari, Younes; Ueno, Kazuhide; Zhao, Zuofeng
  • The Journal of Physical Chemistry C, Vol. 117, Issue 4
  • DOI: 10.1021/jp306302n

Ionic conductivity and glass structure
journal, December 1989


High pressure studies of the transport properties of ionic liquids
journal, January 2012

  • Harris, Kenneth R.; Kanakubo, Mitsuhiro
  • Faraday Discuss., Vol. 154
  • DOI: 10.1039/C1FD00085C

On the scaling behavior of electric conductivity in [C 4 mim][NTf 2 ]
journal, January 2014

  • Wojnarowska, Z.; Jarosz, G.; Grzybowski, A.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 38
  • DOI: 10.1039/C4CP02253J

Experimental evidence of high pressure decoupling between charge transport and structural dynamics in a protic ionic glass-former
journal, August 2017


Anomalous properties of the local dynamics in polymer glasses
journal, September 2009

  • Casalini, R.; Roland, C. M.
  • The Journal of Chemical Physics, Vol. 131, Issue 11
  • DOI: 10.1063/1.3223279

Viscous Liquids and the Glass Transition. II. Secondary Relaxations in Glasses of Rigid Molecules
journal, September 1970

  • Johari, Gyan P.; Goldstein, Martin
  • The Journal of Chemical Physics, Vol. 53, Issue 6
  • DOI: 10.1063/1.1674335

Relaxation and Diffusion in Complex Systems
book, January 2011


Molecular Dynamics of Poly(ethylene glycol) and Poly(propylene glycol) Copolymer Networks by Broadband Dielectric Spectroscopy
journal, April 2007

  • Kalakkunnath, Sumod; Kalika, Douglass S.; Lin, Haiqing
  • Macromolecules, Vol. 40, Issue 8
  • DOI: 10.1021/ma070016a

Glass Transition Dynamics of Room-Temperature Ionic Liquid 1-Methyl-3-trimethylsilylmethylimidazolium Tetrafluoroborate
journal, November 2011

  • Jarosz, Georgina; Mierzwa, Michal; Zioło, Jerzy
  • The Journal of Physical Chemistry B, Vol. 115, Issue 44
  • DOI: 10.1021/jp207291k

Study of molecular dynamics of pharmaceutically important protic ionic liquid-verapamil hydrochloride. I. Test of thermodynamic scaling
journal, January 2009

  • Wojnarowska, Z.; Paluch, M.; Grzybowski, A.
  • The Journal of Chemical Physics, Vol. 131, Issue 10
  • DOI: 10.1063/1.3223540

Pressure and temperature variation of the electrical conductivity of poly(propylene glycol) containing LiCF3SO3
journal, October 1999

  • Fontanella, J. J.
  • The Journal of Chemical Physics, Vol. 111, Issue 15
  • DOI: 10.1063/1.480002

Effect of high pressure on electrical relaxation in poly(propylene oxide) and electrical conductivity in poly(propylene oxide) complexed with lithium salts
journal, October 1986

  • Fontanella, J. J.; Wintersgill, M. C.; Smith, M. K.
  • Journal of Applied Physics, Vol. 60, Issue 8
  • DOI: 10.1063/1.337093

NMR, DSC, DMA, and High Pressure Electrical Conductivity Studies in PPO Complexed with Sodium Perchlorate
journal, January 1988

  • Greenbaum, S. G.; Pak, Y. S.; Wintersgill, M. C.
  • Journal of The Electrochemical Society, Vol. 135, Issue 1
  • DOI: 10.1149/1.2095562

Molecular Transport in Liquids and Glasses
journal, November 1959

  • Cohen, Morrel H.; Turnbull, David
  • The Journal of Chemical Physics, Vol. 31, Issue 5
  • DOI: 10.1063/1.1730566

Works referencing / citing this record:

Ion specific, odd–even glass transition temperatures and conductivities in precise network polymerized ionic liquids
journal, January 2019

  • Shen, Chengtian; Zhao, Qiujie; Evans, Christopher M.
  • Molecular Systems Design & Engineering, Vol. 4, Issue 2
  • DOI: 10.1039/c8me00087e

Structural and Mechanical Properties of Ionic Di-block Copolymers via a Molecular Dynamics Approach
journal, September 2019


Structural correlations tailor conductive properties in polymerized ionic liquids
journal, January 2019

  • Doughty, Benjamin; Genix, Anne-Caroline; Popov, Ivan
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 27
  • DOI: 10.1039/c9cp02268f

Superionic UO 2 : A model anharmonic crystalline material
journal, May 2019

  • Zhang, Hao; Wang, Xinyi; Chremos, Alexandros
  • The Journal of Chemical Physics, Vol. 150, Issue 17
  • DOI: 10.1063/1.5091042

Block Copolymers: Synthesis, Self-Assembly, and Applications
journal, October 2017


Polymerized ionic liquids: Effects of counter-anions on ion conduction and polymerization kinetics
journal, April 2018

  • Chen, Mingtao; Dugger, Jason W.; Li, Xiuli
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 56, Issue 13
  • DOI: 10.1002/pola.29015

Influence of chain stiffness on the dynamical heterogeneity and fragility of polymer melts
journal, December 2018

  • Pan, Deng; Sun, Zhao-Yan
  • The Journal of Chemical Physics, Vol. 149, Issue 23
  • DOI: 10.1063/1.5052153

Synthesis of ionic polymers by free radical polymerization using aprotic trimethylsilylmethyl‐substituted monomers
journal, April 2020

  • Kaestner, Pia; Strehmel, Veronika
  • Journal of Polymer Science, Vol. 58, Issue 7
  • DOI: 10.1002/pol.20190310

Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes
journal, January 2019

  • Bresser, Dominic; Lyonnard, Sandrine; Iojoiu, Cristina
  • Molecular Systems Design & Engineering, Vol. 4, Issue 4
  • DOI: 10.1039/c9me00038k

Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes
text, January 2019


Activation volume in superpressed glass-formers
journal, September 2019


Structural and Mechanical Properties of Ionic Di-block Copolymers via a Molecular Dynamics Approach
journal, September 2019


Block Copolymers: Synthesis, Self-Assembly, and Applications
journal, October 2017