skip to main content

DOE PAGESDOE PAGES

4 results for: All records
Author ORCID ID is 0000000288066041
Full Text and Citations
Filters
  1. Polymerized ionic liquids (polyILs), composed mostly of organic ions covalently bonded to the polymer backbone and free counterions, are considered as an ideal electrolytes for various electrochemical devices, including fuel cells, supercapacitors and batteries. Despite large structural diversity of these systems, all of them reveal a universal but poorly understood feature - a charge transport faster than the segmental dynamics. Here, to address this issue, we have studied three novel polymer electrolyte membrane for fuel cells as well as four single-ion conductors including highly conductive siloxane-based polyIL. Our ambient and high pressure studies revealed fundamental differences in the conducting propertiesmore » of the examined systems. Finally, we demonstrate that the proposed methodology is a powerful tool to identify the charge transport mechanism in polyILs in general and thereby contribute to unraveling the microscopic nature of the decoupling phenomenon in these materials.« less
  2. Conductivity in polymer electrolytes has been generally discussed with the assumption that the segmental motions control charge transport. However, much less attention has been paid to the mechanism of ion conductivity where the motions of ions are less dependent (decoupled) on segmental dynamics. We present that this phenomenon is observed in ionic materials as they approach their glass transition temperature and becomes essential for design and development of highly conducting solid polymer electrolytes. In this paper, we study the effect of chain rigidity on the decoupling of ion transport from segmental motion in three polymerized ionic liquids (polyILs) containing themore » same cation–anion pair but differing in flexibility of the polymer backbones and side groups. Analysis of dielectric and rheology data reveals that decoupling is strong in vinyl-based rigid polymers while almost negligible in novel siloxane-based flexible polyILs. To explain this behavior, we investigated ion and chain dynamics at ambient and elevated pressure. Our results suggest that decoupling has a direct relationship to the frustration in chain packing and free volume. Finally, these conclusions are also supported by coarse-grained molecular dynamics simulations.« less
  3. Poly(2-isopropenyl-2-oxazoline) (PIPOx) has drawn significant attention for numerous applications. However, the successful living anionic polymerization of 2-isopropenyl-2-oxazoline has not been reported previously. In this paper, we describe how well-defined PIPOx with quantitative yields, controlled molecular weights from 6800 to over 100 000 g/mol and low polydispersity indices (PDI ≤ 1.17) were synthesized successfully via living anionic polymerization using diphenylmethylpotassium/diethylzinc (DPM-K/Et 2Zn) in tetrahydrofuran (THF) at 0 °C. In particular, we report the precise synthesis of well-defined PIPOx with the highest molecular weight ever reported (over 100 000 g/mol) and low PDI of 1.17. The resulting polymers were characterized by 1Hmore » and 13C nuclear magnetic resonance spectroscopy (NMR) along with size exclusion chromatography (SEC). Additionally, the reactivity of living PIPOx was investigated by crossover block copolymerization with styrene (St), 2-vinylpyridine (2VP), and methyl methacrylate (MMA). It was found that the nucleophilicity of living PIPOx is of this order: living PS > living P2VP > living PMMA > living PIPOx. The self-assembly behavior in bulk of PIPOx-b-PS-b-PIPOx triblock copolymers having different block ratios of 10:80:10 and 25:50:25 was studied using transmission electron microscopy (TEM). Finally, the formation of spherical and lamellar nanostructures, respectively, was observed.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.