DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Changing the Mechanism for CO 2 Hydrogenation Using Solvent‐Dependent Thermodynamics

Abstract

Abstract A critical scientific challenge for utilization of CO 2 is the development of catalyst systems that function in water and use inexpensive and environmentally friendly reagents. We have used thermodynamic insights to predict and demonstrate that the HCo I (dmpe) 2 catalyst system, previously described for use in organic solvents, can hydrogenate CO 2 to formate in water with bicarbonate as the only added reagent. Replacing tetrahydrofuran as the solvent with water changes the mechanism for catalysis by altering the thermodynamics for hydride transfer to CO 2 from a key dihydride intermediate. The need for a strong organic base was eliminated by performing catalysis in water owing to the change in mechanism. These studies demonstrate that the solvent plays a pivotal role in determining the reaction thermodynamics and thereby catalytic mechanism and activity.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Catalysis Science Group Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1402093
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition) Journal Volume: 56 Journal Issue: 47; Journal ID: ISSN 1433-7851
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Burgess, Samantha A., Appel, Aaron M., Linehan, John C., and Wiedner, Eric S. Changing the Mechanism for CO 2 Hydrogenation Using Solvent‐Dependent Thermodynamics. Germany: N. p., 2017. Web. doi:10.1002/anie.201709319.
Burgess, Samantha A., Appel, Aaron M., Linehan, John C., & Wiedner, Eric S. Changing the Mechanism for CO 2 Hydrogenation Using Solvent‐Dependent Thermodynamics. Germany. https://doi.org/10.1002/anie.201709319
Burgess, Samantha A., Appel, Aaron M., Linehan, John C., and Wiedner, Eric S. Mon . "Changing the Mechanism for CO 2 Hydrogenation Using Solvent‐Dependent Thermodynamics". Germany. https://doi.org/10.1002/anie.201709319.
@article{osti_1402093,
title = {Changing the Mechanism for CO 2 Hydrogenation Using Solvent‐Dependent Thermodynamics},
author = {Burgess, Samantha A. and Appel, Aaron M. and Linehan, John C. and Wiedner, Eric S.},
abstractNote = {Abstract A critical scientific challenge for utilization of CO 2 is the development of catalyst systems that function in water and use inexpensive and environmentally friendly reagents. We have used thermodynamic insights to predict and demonstrate that the HCo I (dmpe) 2 catalyst system, previously described for use in organic solvents, can hydrogenate CO 2 to formate in water with bicarbonate as the only added reagent. Replacing tetrahydrofuran as the solvent with water changes the mechanism for catalysis by altering the thermodynamics for hydride transfer to CO 2 from a key dihydride intermediate. The need for a strong organic base was eliminated by performing catalysis in water owing to the change in mechanism. These studies demonstrate that the solvent plays a pivotal role in determining the reaction thermodynamics and thereby catalytic mechanism and activity.},
doi = {10.1002/anie.201709319},
journal = {Angewandte Chemie (International Edition)},
number = 47,
volume = 56,
place = {Germany},
year = {Mon Oct 23 00:00:00 EDT 2017},
month = {Mon Oct 23 00:00:00 EDT 2017}
}

Works referenced in this record:

Solvent influence on the thermodynamics for hydride transfer from bis(diphosphine) complexes of nickel
journal, January 2016

  • Connelly Robinson, Samantha J.; Zall, Christopher M.; Miller, Deanna L.
  • Dalton Transactions, Vol. 45, Issue 24
  • DOI: 10.1039/C6DT00309E

Synthesis and Reactivity of Iron Complexes with a New Pyrazine-Based Pincer Ligand, and Application in Catalytic Low-Pressure Hydrogenation of Carbon Dioxide
journal, April 2015


The use of supercritical fluids as solvents for NMR spectroscopy
journal, October 2005

  • Yonker, Clement R.; Linehan, John C.
  • Progress in Nuclear Magnetic Resonance Spectroscopy, Vol. 47, Issue 1-2, p. 95-109
  • DOI: 10.1016/j.pnmrs.2005.08.002

Thermodynamic and Kinetic Hydricity of Ruthenium(II) Hydride Complexes
journal, September 2012

  • Matsubara, Yasuo; Fujita, Etsuko; Doherty, Mark D.
  • Journal of the American Chemical Society, Vol. 134, Issue 38
  • DOI: 10.1021/ja302937q

Understanding the Relationship Between Kinetics and Thermodynamics in CO 2 Hydrogenation Catalysis
journal, August 2017


An Iron Electrocatalyst for Selective Reduction of CO 2 to Formate in Water: Including Thermochemical Insights
journal, November 2015


Aqueous hydrogenation of carbon dioxide catalysed by water-soluble ruthenium aqua complexes under acidic conditions
journal, January 2004

  • Hayashi, Hideki; Ogo, Seiji; Fukuzumi, Shunichi
  • Chemical Communications, Issue 23
  • DOI: 10.1039/b411633j

Mechanistic Insight through Factors Controlling Effective Hydrogenation of CO 2 Catalyzed by Bioinspired Proton-Responsive Iridium(III) Complexes
journal, April 2013

  • Wang, Wan-Hui; Muckerman, James T.; Fujita, Etsuko
  • ACS Catalysis, Vol. 3, Issue 5
  • DOI: 10.1021/cs400172j

A Cobalt-Based Catalyst for the Hydrogenation of CO 2 under Ambient Conditions
journal, July 2013

  • Jeletic, Matthew S.; Mock, Michael T.; Appel, Aaron M.
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja406601v

Catalytic Hydrogenation of Carbon Dioxide Using Ir(III)−Pincer Complexes
journal, October 2009

  • Tanaka, Ryo; Yamashita, Makoto; Nozaki, Kyoko
  • Journal of the American Chemical Society, Vol. 131, Issue 40
  • DOI: 10.1021/ja903574e

Hydrogenation of carbon dioxide to formic acid using water-soluble rhodium catalyststs
journal, January 1993

  • Gassner, Franz; Leitner, Walter
  • Journal of the Chemical Society, Chemical Communications, Issue 19
  • DOI: 10.1039/c39930001465

Insertion of CO 2 , CS 2 , and COS into Iron(II)−Hydride Bonds
journal, December 2000

  • Field, Leslie D.; Lawrenz, Eric T.; Shaw, Warren J.
  • Inorganic Chemistry, Vol. 39, Issue 25
  • DOI: 10.1021/ic991399z

Some New Hydrides of Iron and Osmium
journal, July 1960

  • Chatt, J.; Hart, F. A.; Hayter, R. G.
  • Nature, Vol. 187, Issue 4731
  • DOI: 10.1038/187055a0

Catalysis for the Valorization of Exhaust Carbon: from CO 2 to Chemicals, Materials, and Fuels. Technological Use of CO 2
journal, November 2013

  • Aresta, Michele; Dibenedetto, Angela; Angelini, Antonella
  • Chemical Reviews, Vol. 114, Issue 3
  • DOI: 10.1021/cr4002758

p K a Measurements of P(RNCH 2 CH 3 ) 3 N
journal, August 2000

  • Kisanga, Philip B.; Verkade, John G.; Schwesinger, Reinhard
  • The Journal of Organic Chemistry, Vol. 65, Issue 17
  • DOI: 10.1021/jo000427o

Free formic acid by hydrogenation of carbon dioxide in sodium formate solutions
journal, October 2011


Cp*Co(III) Catalysts with Proton-Responsive Ligands for Carbon Dioxide Hydrogenation in Aqueous Media
journal, October 2013

  • Badiei, Yosra M.; Wang, Wan-Hui; Hull, Jonathan F.
  • Inorganic Chemistry, Vol. 52, Issue 21
  • DOI: 10.1021/ic401707u

Brønsted–Lowry Acid Strength of Metal Hydride and Dihydrogen Complexes
journal, March 2016


Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry
journal, May 2016

  • Klankermayer, Jürgen; Wesselbaum, Sebastian; Beydoun, Kassem
  • Angewandte Chemie International Edition, Vol. 55, Issue 26
  • DOI: 10.1002/anie.201507458

CO 2 reduction or HCO 2 oxidation? Solvent-dependent thermochemistry of a nickel hydride complex
journal, January 2017

  • Ceballos, Bianca M.; Tsay, Charlene; Yang, Jenny Y.
  • Chemical Communications, Vol. 53, Issue 53
  • DOI: 10.1039/C7CC02511D

Secondary Coordination Sphere Interactions Facilitate the Insertion Step in an Iridium(III) CO 2 Reduction Catalyst
journal, June 2011

  • Schmeier, Timothy J.; Dobereiner, Graham E.; Crabtree, Robert H.
  • Journal of the American Chemical Society, Vol. 133, Issue 24
  • DOI: 10.1021/ja2035514

Synthesis and Hydride Transfer Reactions of Cobalt and Nickel Hydride Complexes to BX 3 Compounds
journal, December 2011

  • Mock, Michael T.; Potter, Robert G.; O’Hagan, Molly J.
  • Inorganic Chemistry, Vol. 50, Issue 23
  • DOI: 10.1021/ic200857x

CO 2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO 2 Reduction
journal, August 2015


Carbon Dioxide to Methanol: The Aqueous Catalytic Way at Room Temperature
journal, September 2016

  • Sordakis, Katerina; Tsurusaki, Akihiro; Iguchi, Masayuki
  • Chemistry - A European Journal, Vol. 22, Issue 44
  • DOI: 10.1002/chem.201603407

Thermodynamic Hydricity of Transition Metal Hydrides
journal, June 2016


Hydrogenation of CO 2 in Water Using a Bis(diphosphine) Ni–H Complex
journal, March 2017

  • Burgess, Samantha A.; Kendall, Alexander J.; Tyler, David R.
  • ACS Catalysis, Vol. 7, Issue 4
  • DOI: 10.1021/acscatal.7b00350

Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures
journal, March 2012

  • Hull, Jonathan F.; Himeda, Yuichiro; Wang, Wan-Hui
  • Nature Chemistry, Vol. 4, Issue 5, p. 383-388
  • DOI: 10.1038/nchem.1295

A Cobalt Hydride Catalyst for the Hydrogenation of CO 2 : Pathways for Catalysis and Deactivation
journal, September 2014

  • Jeletic, Matthew S.; Helm, Monte L.; Hulley, Elliott B.
  • ACS Catalysis, Vol. 4, Issue 10
  • DOI: 10.1021/cs5009927

Aqueous Hydricity of Late Metal Catalysts as a Continuum Tuned by Ligands and the Medium
journal, February 2016

  • Pitman, Catherine L.; Brereton, Kelsey R.; Miller, Alexander J. M.
  • Journal of the American Chemical Society, Vol. 138, Issue 7
  • DOI: 10.1021/jacs.5b12363

Ab Initio Calculations of Thermodynamic Hydricities of Transition-Metal Hydrides in Acetonitrile
journal, August 2007

  • Qi, Xiu-Juan; Fu, Yao; Liu, Lei
  • Organometallics, Vol. 26, Issue 17
  • DOI: 10.1021/om0702429

Low-Pressure Hydrogenation of Carbon Dioxide Catalyzed by an Iron Pincer Complex Exhibiting Noble Metal Activity
journal, September 2011

  • Langer, Robert; Diskin-Posner, Yael; Leitus, Gregory
  • Angewandte Chemie, Vol. 123, Issue 42
  • DOI: 10.1002/ange.201104542

Transformation of Carbon Dioxide
journal, June 2007

  • Sakakura, Toshiyasu; Choi, Jun-Chul; Yasuda, Hiroyuki
  • Chemical Reviews, Vol. 107, Issue 6
  • DOI: 10.1021/cr068357u

Low-Pressure Hydrogenation of Carbon Dioxide Catalyzed by an Iron Pincer Complex Exhibiting Noble Metal Activity
journal, September 2011

  • Langer, Robert; Diskin-Posner, Yael; Leitus, Gregory
  • Angewandte Chemie International Edition, Vol. 50, Issue 42
  • DOI: 10.1002/anie.201104542

Anthropogenic Chemical Carbon Cycle for a Sustainable Future
journal, August 2011

  • Olah, George A.; Prakash, G. K. Surya; Goeppert, Alain
  • Journal of the American Chemical Society, Vol. 133, Issue 33
  • DOI: 10.1021/ja202642y

Recent advances in the homogeneous hydrogenation of carbon dioxide
journal, December 2004

  • Jessop, Philip G.; Joó, Ferenc; Tai, Chih-Cheng
  • Coordination Chemistry Reviews, Vol. 248, Issue 21-24, p. 2425-2442
  • DOI: 10.1016/j.ccr.2004.05.019

Formation of molecular hydrogen complexes of iron by the reversible protonation of iron dihydrides with alcohols
journal, January 1988

  • Baker, Murray V.; Field, Leslie D.; Young, David J.
  • Journal of the Chemical Society, Chemical Communications, Issue 8
  • DOI: 10.1039/c39880000546

CO 2 Hydrogenation Catalyzed by Iridium Complexes with a Proton-Responsive Ligand
journal, February 2015

  • Onishi, Naoya; Xu, Shaoan; Manaka, Yuichi
  • Inorganic Chemistry, Vol. 54, Issue 11
  • DOI: 10.1021/ic502904q

Ruthenium-Catalyzed Hydrogenation of Bicarbonate in Water
journal, July 2010

  • Federsel, Christopher; Jackstell, Ralf; Boddien, Albert
  • ChemSusChem, Vol. 3, Issue 9
  • DOI: 10.1002/cssc.201000151

Predicting the reactivity of hydride donors in water: thermodynamic constants for hydrogen
journal, January 2015

  • Connelly, Samantha J.; Wiedner, Eric S.; Appel, Aaron M.
  • Dalton Transactions, Vol. 44, Issue 13
  • DOI: 10.1039/C4DT03841J

New Ru( ii ) N′NN′-type pincer complexes: synthesis, characterization and the catalytic hydrogenation of CO 2 or bicarbonates to formate salts
journal, January 2017

  • Dai, Zengjin; Luo, Qi; Cong, Hengjiang
  • New Journal of Chemistry, Vol. 41, Issue 8
  • DOI: 10.1039/C6NJ03855G

Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO 2 Fixation
journal, June 2013

  • Appel, Aaron M.; Bercaw, John E.; Bocarsly, Andrew B.
  • Chemical Reviews, Vol. 113, Issue 8
  • DOI: 10.1021/cr300463y

Ab Initio Calculations of p K a Values of Transition-Metal Hydrides in Acetonitrile
journal, December 2006

  • Qi, Xiu-Juan; Liu, Lei; Fu, Yao
  • Organometallics, Vol. 25, Issue 25
  • DOI: 10.1021/om0608859

Selektive katalytische Synthesen mit Kohlendioxid und Wasserstoff: Katalyse-Schach an der Nahtstelle zwischen Energie und Chemie
journal, May 2016

  • Klankermayer, Jürgen; Wesselbaum, Sebastian; Beydoun, Kassem
  • Angewandte Chemie, Vol. 128, Issue 26
  • DOI: 10.1002/ange.201507458

Solvation Effects on Transition Metal Hydricity
journal, November 2015

  • Tsay, Charlene; Livesay, Brooke N.; Ruelas, Samantha
  • Journal of the American Chemical Society, Vol. 137, Issue 44
  • DOI: 10.1021/jacs.5b07777

Investigation of the hydroformylation of ethylene in liquid carbon dioxide
journal, May 2002