Making a Splash in Homogeneous CO 2 Hydrogenation: Elucidating the Impact of Solvent on Catalytic Mechanisms
Abstract
Abstract Molecular catalysts for hydrogenation of CO 2 are widely studied as a means of chemical hydrogen storage. Catalysts are traditionally designed from the perspective of controlling the ligands bound to the metal. In recent years, studies have shown that the solvent can also play a key role in the mechanism of CO 2 hydrogenation. A prominent example is the impact of the solvent on the thermodynamic hydride donor ability, or hydricity, of metal hydride complexes relative to the hydride acceptor ability of CO 2 . In some cases, simply changing from an organic solvent to water can reverse the direction of hydride transfer between a metal hydride and CO 2 . Additionally, the solvent can impact catalysis by converting CO 2 into carbonate species, as well as activate intermediate products for hydrogenation to more reduced products. By understanding the substrate and product speciation, as well as the reactivity of the catalyst towards the substrate, the solvent can be used as a central design component for the rational development of new catalytic systems.
- Authors:
-
- Catalysis Science Group Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
- Publication Date:
- Sponsoring Org.:
- USDOE
- OSTI Identifier:
- 1461905
- Resource Type:
- Publisher's Accepted Manuscript
- Journal Name:
- Chemistry - A European Journal
- Additional Journal Information:
- Journal Name: Chemistry - A European Journal Journal Volume: 24 Journal Issue: 64; Journal ID: ISSN 0947-6539
- Publisher:
- Wiley Blackwell (John Wiley & Sons)
- Country of Publication:
- Germany
- Language:
- English
Citation Formats
Wiedner, Eric S., and Linehan, John C.. Making a Splash in Homogeneous CO 2 Hydrogenation: Elucidating the Impact of Solvent on Catalytic Mechanisms. Germany: N. p., 2018.
Web. doi:10.1002/chem.201801759.
Wiedner, Eric S., & Linehan, John C.. Making a Splash in Homogeneous CO 2 Hydrogenation: Elucidating the Impact of Solvent on Catalytic Mechanisms. Germany. https://doi.org/10.1002/chem.201801759
Wiedner, Eric S., and Linehan, John C.. Fri .
"Making a Splash in Homogeneous CO 2 Hydrogenation: Elucidating the Impact of Solvent on Catalytic Mechanisms". Germany. https://doi.org/10.1002/chem.201801759.
@article{osti_1461905,
title = {Making a Splash in Homogeneous CO 2 Hydrogenation: Elucidating the Impact of Solvent on Catalytic Mechanisms},
author = {Wiedner, Eric S. and Linehan, John C.},
abstractNote = {Abstract Molecular catalysts for hydrogenation of CO 2 are widely studied as a means of chemical hydrogen storage. Catalysts are traditionally designed from the perspective of controlling the ligands bound to the metal. In recent years, studies have shown that the solvent can also play a key role in the mechanism of CO 2 hydrogenation. A prominent example is the impact of the solvent on the thermodynamic hydride donor ability, or hydricity, of metal hydride complexes relative to the hydride acceptor ability of CO 2 . In some cases, simply changing from an organic solvent to water can reverse the direction of hydride transfer between a metal hydride and CO 2 . Additionally, the solvent can impact catalysis by converting CO 2 into carbonate species, as well as activate intermediate products for hydrogenation to more reduced products. By understanding the substrate and product speciation, as well as the reactivity of the catalyst towards the substrate, the solvent can be used as a central design component for the rational development of new catalytic systems.},
doi = {10.1002/chem.201801759},
journal = {Chemistry - A European Journal},
number = 64,
volume = 24,
place = {Germany},
year = {2018},
month = {7}
}
https://doi.org/10.1002/chem.201801759
Web of Science
Works referenced in this record:
Solvent influence on the thermodynamics for hydride transfer from bis(diphosphine) complexes of nickel
journal, January 2016
- Connelly Robinson, Samantha J.; Zall, Christopher M.; Miller, Deanna L.
- Dalton Transactions, Vol. 45, Issue 24
Formation and Characterization of Water-Soluble Hydrido-Ruthenium(II) Complexes of 1,3,5-Triaza-7-phosphaadamantane and Their Catalytic Activity in Hydrogenation of CO 2 and HCO 3 - in Aqueous Solution
journal, October 2000
- Laurenczy, Gábor; Joó, Ferenc; Nádasdi, Levente
- Inorganic Chemistry, Vol. 39, Issue 22
Directing the Reactivity of [HFe 4 N(CO) 12 ] − toward H + or CO 2 Reduction by Understanding the Electrocatalytic Mechanism
journal, November 2011
- Rail, M. Diego; Berben, Louise A.
- Journal of the American Chemical Society, Vol. 133, Issue 46
Considering a Possible Role for [H-Fe 4 N(CO) 12 ] 2– in Selective Electrocatalytic CO 2 Reduction to Formate by [Fe 4 N(CO) 12 ] −
journal, January 2018
- Taheri, Atefeh; Loewen, Natalia D.; Cluff, David B.
- Organometallics, Vol. 37, Issue 7
Integrative CO 2 Capture and Hydrogenation to Methanol with Reusable Catalyst and Amine: Toward a Carbon Neutral Methanol Economy
journal, January 2018
- Kar, Sayan; Sen, Raktim; Goeppert, Alain
- Journal of the American Chemical Society, Vol. 140, Issue 5
Thermodynamic and Kinetic Hydricity of Ruthenium(II) Hydride Complexes
journal, September 2012
- Matsubara, Yasuo; Fujita, Etsuko; Doherty, Mark D.
- Journal of the American Chemical Society, Vol. 134, Issue 38
Understanding the Relationship Between Kinetics and Thermodynamics in CO 2 Hydrogenation Catalysis
journal, August 2017
- Jeletic, Matthew S.; Hulley, Elliott B.; Helm, Monte L.
- ACS Catalysis, Vol. 7, Issue 9
603. Kinetics of the aldol condensation of acetaldehyde
journal, January 1960
- Bell, R. P.; McTigue, P. T.
- Journal of the Chemical Society (Resumed)
Mechanistic Insight through Factors Controlling Effective Hydrogenation of CO 2 Catalyzed by Bioinspired Proton-Responsive Iridium(III) Complexes
journal, April 2013
- Wang, Wan-Hui; Muckerman, James T.; Fujita, Etsuko
- ACS Catalysis, Vol. 3, Issue 5
A Cobalt-Based Catalyst for the Hydrogenation of CO 2 under Ambient Conditions
journal, July 2013
- Jeletic, Matthew S.; Mock, Michael T.; Appel, Aaron M.
- Journal of the American Chemical Society, Vol. 135, Issue 31
The acceptor number ? A quantitative empirical parameter for the electrophilic properties of solvents
journal, January 1975
- Mayer, Ulrich; Gutmann, Viktor; Gerger, Wolfgang
- Monatshefte f�r Chemie, Vol. 106, Issue 6
Cascade Catalysis for the Homogeneous Hydrogenation of CO 2 to Methanol
journal, November 2011
- Huff, Chelsea A.; Sanford, Melanie S.
- Journal of the American Chemical Society, Vol. 133, Issue 45
Hydrogenation of carbon dioxide to methanol using a homogeneous ruthenium–Triphos catalyst: from mechanistic investigations to multiphase catalysis
journal, January 2015
- Wesselbaum, Sebastian; Moha, Verena; Meuresch, Markus
- Chemical Science, Vol. 6, Issue 1
Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media
journal, June 2014
- Moret, Séverine; Dyson, Paul J.; Laurenczy, Gábor
- Nature Communications, Vol. 5, Issue 1
Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium-Phosphine Catalyst
journal, June 2012
- Wesselbaum, Sebastian; vom Stein, Thorsten; Klankermayer, Jürgen
- Angewandte Chemie International Edition, Vol. 51, Issue 30
Tandem Amine and Ruthenium-Catalyzed Hydrogenation of CO 2 to Methanol
journal, January 2015
- Rezayee, Nomaan M.; Huff, Chelsea A.; Sanford, Melanie S.
- Journal of the American Chemical Society, Vol. 137, Issue 3
Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K
journal, January 1989
- Bratsch, Steven G.
- Journal of Physical and Chemical Reference Data, Vol. 18, Issue 1
Hydricities of d 6 Metal Hydride Complexes in Water
journal, March 2009
- Creutz, Carol; Chou, Mei H.
- Journal of the American Chemical Society, Vol. 131, Issue 8
Secondary Coordination Sphere Interactions Facilitate the Insertion Step in an Iridium(III) CO 2 Reduction Catalyst
journal, June 2011
- Schmeier, Timothy J.; Dobereiner, Graham E.; Crabtree, Robert H.
- Journal of the American Chemical Society, Vol. 133, Issue 24
CO 2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO 2 Reduction
journal, August 2015
- Wang, Wan-Hui; Himeda, Yuichiro; Muckerman, James T.
- Chemical Reviews, Vol. 115, Issue 23
Experimental and Theoretical Study of CO 2 Insertion into Ruthenium Hydride Complexes
journal, February 2016
- Ramakrishnan, Srinivasan; Waldie, Kate M.; Warnke, Ingolf
- Inorganic Chemistry, Vol. 55, Issue 4
Thermodynamic Hydricity of Transition Metal Hydrides
journal, June 2016
- Wiedner, Eric S.; Chambers, Matthew B.; Pitman, Catherine L.
- Chemical Reviews, Vol. 116, Issue 15
Carbon dioxide-to-methanol single-pot conversion using a C-scorpionate iron( ii ) catalyst
journal, January 2017
- Ribeiro, A. P. C.; Martins, L. M. D. R. S.; Pombeiro, A. J. L.
- Green Chemistry, Vol. 19, Issue 20
Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures
journal, March 2012
- Hull, Jonathan F.; Himeda, Yuichiro; Wang, Wan-Hui
- Nature Chemistry, Vol. 4, Issue 5, p. 383-388
A Cobalt Hydride Catalyst for the Hydrogenation of CO 2 : Pathways for Catalysis and Deactivation
journal, September 2014
- Jeletic, Matthew S.; Helm, Monte L.; Hulley, Elliott B.
- ACS Catalysis, Vol. 4, Issue 10
Combining Low-Pressure CO 2 Capture and Hydrogenation To Form Methanol
journal, March 2015
- Khusnutdinova, Julia R.; Garg, Jai Anand; Milstein, David
- ACS Catalysis, Vol. 5, Issue 4
Formic Acid as a Hydrogen Energy Carrier
journal, December 2016
- Eppinger, Jörg; Huang, Kuo-Wei
- ACS Energy Letters, Vol. 2, Issue 1
Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds
journal, November 2010
- Cook, Timothy R.; Dogutan, Dilek K.; Reece, Steven Y.
- Chemical Reviews, Vol. 110, Issue 11
Molecular Cobalt Complexes with Pendant Amines for Selective Electrocatalytic Reduction of Carbon Dioxide to Formic Acid
journal, March 2017
- Roy, Souvik; Sharma, Bhaskar; Pécaut, Jacques
- Journal of the American Chemical Society, Vol. 139, Issue 10
Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO
journal, July 2011
- Balaraman, Ekambaram; Gunanathan, Chidambaram; Zhang, Jing
- Nature Chemistry, Vol. 3, Issue 8
Homogeneous Hydrogenation of CO 2 to Methyl Formate Utilizing Switchable Ionic Liquids
journal, August 2014
- Yadav, Mahendra; Linehan, John C.; Karkamkar, Abhijeet J.
- Inorganic Chemistry, Vol. 53, Issue 18
Catalytic Hydrogenation of CO 2 to Formates by a Lutidine-Derived Ru–CNC Pincer Complex: Theoretical Insight into the Unrealized Potential
journal, January 2015
- Filonenko, Georgy A.; Smykowski, Daniel; Szyja, Bartłomiej M.
- ACS Catalysis, Vol. 5, Issue 2
CO 2 Hydrogenation Catalyzed by Iridium Complexes with a Proton-Responsive Ligand
journal, February 2015
- Onishi, Naoya; Xu, Shaoan; Manaka, Yuichi
- Inorganic Chemistry, Vol. 54, Issue 11
Toward Rational Design of 3d Transition Metal Catalysts for CO 2 Hydrogenation Based on Insights into Hydricity-Controlled Rate-Determining Steps
journal, May 2016
- Mondal, Bhaskar; Neese, Frank; Ye, Shengfa
- Inorganic Chemistry, Vol. 55, Issue 11
Hydrogenative Carbon Dioxide Reduction Catalyzed by Mononuclear Ruthenium Polypyridyl Complexes: Discerning between Electronic and Steric Effects
journal, August 2017
- Ono, Takashi; Qu, Shuanglin; Gimbert-Suriñach, Carolina
- ACS Catalysis, Vol. 7, Issue 9
Ruthenium-Catalyzed Hydrogenation of Bicarbonate in Water
journal, July 2010
- Federsel, Christopher; Jackstell, Ralf; Boddien, Albert
- ChemSusChem, Vol. 3, Issue 9
Computational Design of Cobalt Catalysts for Hydrogenation of Carbon Dioxide and Dehydrogenation of Formic Acid
journal, November 2016
- Ge, Hongyu; Jing, Yuanyuan; Yang, Xinzheng
- Inorganic Chemistry, Vol. 55, Issue 23
New Ru( ii ) N′NN′-type pincer complexes: synthesis, characterization and the catalytic hydrogenation of CO 2 or bicarbonates to formate salts
journal, January 2017
- Dai, Zengjin; Luo, Qi; Cong, Hengjiang
- New Journal of Chemistry, Vol. 41, Issue 8
Catalytic Hydrogenation of Carbon Dioxide and Bicarbonates with a Well-Defined Cobalt Dihydrogen Complex
journal, December 2011
- Federsel, Christopher; Ziebart, Carolin; Jackstell, Ralf
- Chemistry - A European Journal, Vol. 18, Issue 1
Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium-Phosphine Catalyst
journal, June 2012
- Wesselbaum, Sebastian; vom Stein, Thorsten; Klankermayer, Jürgen
- Angewandte Chemie, Vol. 124, Issue 30
A Well-Defined Iron Catalyst for the Reduction of Bicarbonates and Carbon Dioxide to Formates, Alkyl Formates, and Formamides
journal, November 2010
- Federsel, Christopher; Boddien, Albert; Jackstell, Ralf
- Angewandte Chemie International Edition, Vol. 49, Issue 50
Low-Temperature Hydrogenation of Carbon Dioxide to Methanol with a Homogeneous Cobalt Catalyst
journal, January 2017
- Schneidewind, Jacob; Adam, Rosa; Baumann, Wolfgang
- Angewandte Chemie International Edition, Vol. 56, Issue 7
Hydricity of Transition-Metal Hydrides: Thermodynamic Considerations for CO 2 Reduction
journal, January 2018
- Waldie, Kate M.; Ostericher, Andrew L.; Reineke, Mark H.
- ACS Catalysis, Vol. 8, Issue 2
An Iron Electrocatalyst for Selective Reduction of CO 2 to Formate in Water: Including Thermochemical Insights
journal, November 2015
- Taheri, Atefeh; Thompson, Emily J.; Fettinger, James C.
- ACS Catalysis, Vol. 5, Issue 12
Changing the Mechanism for CO 2 Hydrogenation Using Solvent-Dependent Thermodynamics
journal, October 2017
- Burgess, Samantha A.; Appel, Aaron M.; Linehan, John C.
- Angewandte Chemie, Vol. 129, Issue 47
Solvent effects on the reactivities of organometallic compounds
journal, February 1976
- Gutmann, Viktor
- Coordination Chemistry Reviews, Vol. 18, Issue 2
Synthesis of Imidazolium-Tethered Ruthenium(II)-Arene Complexes and Their Application in Biphasic Catalysis
journal, January 2006
- Geldbach, Tilmann J.; Laurenczy, Gábor; Scopelliti, Rosario
- Organometallics, Vol. 25, Issue 3
Mechanistic Studies on the Reversible Hydrogenation of Carbon Dioxide Catalyzed by an Ir-PNP Complex
journal, December 2011
- Tanaka, Ryo; Yamashita, Makoto; Chung, Lung Wa
- Organometallics, Vol. 30, Issue 24
Calorimetric and spectroscopic studies on solvation energetics for H 2 storage in the CO 2 /HCOOH system
journal, January 2016
- Fink, Cornel; Katsyuba, Sergey; Laurenczy, Gabor
- Physical Chemistry Chemical Physics, Vol. 18, Issue 16
A Computational Investigation of the Insertion of Carbon Dioxide into Four- and Five-Coordinate Iridium Hydrides
journal, May 2013
- Bernskoetter, Wesley H.; Hazari, Nilay
- European Journal of Inorganic Chemistry, Vol. 2013, Issue 22-23
Kinetics and mechanism of carbon dioxide insertion into a metal-hydride bond. A large solvent effect and an inverse kinetic isotope effect
journal, July 1986
- Sullivan, B. Patrick.; Meyer, Thomas J.
- Organometallics, Vol. 5, Issue 7
Bicarbonate Hydrogenation Catalyzed by Iron: How the Choice of Solvent Can Reverse the Reaction
journal, April 2016
- Marcos, Rocío; Xue, Liqin; Sánchez-de-Armas, Rocío
- ACS Catalysis, Vol. 6, Issue 5
Homogeneous hydrogenation of carbon dioxide and bicarbonate in aqueous solution catalyzed by water-soluble ruthenium(II) phosphine complexes
journal, November 2003
- Elek, János; Nádasdi, Levente; Papp, Gábor
- Applied Catalysis A: General, Vol. 255, Issue 1
CO 2 reduction or HCO 2 − oxidation? Solvent-dependent thermochemistry of a nickel hydride complex
journal, January 2017
- Ceballos, Bianca M.; Tsay, Charlene; Yang, Jenny Y.
- Chemical Communications, Vol. 53, Issue 53
The steps of activating a prospective CO 2 hydrogenation catalyst with combined CO 2 capture and reduction
journal, January 2016
- Lao, D. B.; Galan, B. R.; Linehan, J. C.
- Green Chemistry, Vol. 18, Issue 18
Mechanistic Insights into Iridium Catalyzed Disproportionation of Formic Acid to CO 2 and Methanol: A DFT Study
journal, May 2018
- Yan, Xiuli; Yang, Xinzheng
- Organometallics, Vol. 37, Issue 10
Catalytic Fixation of Carbon Dioxide to Formic acid by Transition-Metal Complexes Under mild Conditions
journal, August 1976
- Inoue, Yoshio; Izumida, Hitoshi; Sasaki, Yoshiyuki
- Chemistry Letters, Vol. 5, Issue 8
Basicity of the Amide Bond 1,2
journal, December 1955
- Goldfarb, A. R.; Mele, A.; Gutstein, N.
- Journal of the American Chemical Society, Vol. 77, Issue 23
Ein wohldefinierter Eisenkatalysator für die Reduktion von Bicarbonaten und Kohlendioxid zu Formiaten, Alkylformiaten und Formamiden
journal, November 2010
- Federsel, Christopher; Boddien, Albert; Jackstell, Ralf
- Angewandte Chemie, Vol. 122, Issue 50
Carbon Dioxide to Methanol: The Aqueous Catalytic Way at Room Temperature
journal, September 2016
- Sordakis, Katerina; Tsurusaki, Akihiro; Iguchi, Masayuki
- Chemistry - A European Journal, Vol. 22, Issue 44
Hydrogenation of CO 2 in Water Using a Bis(diphosphine) Ni–H Complex
journal, March 2017
- Burgess, Samantha A.; Kendall, Alexander J.; Tyler, David R.
- ACS Catalysis, Vol. 7, Issue 4
Angenäherte, spektrographische Bestimmung der Hydratationsgleichgewichtskonstanten wässriger Formaldehydlösungen
journal, October 1947
- Bieber, R.; Trümpler, G.
- Helvetica Chimica Acta, Vol. 30, Issue 6
Aqueous Hydricity of Late Metal Catalysts as a Continuum Tuned by Ligands and the Medium
journal, February 2016
- Pitman, Catherine L.; Brereton, Kelsey R.; Miller, Alexander J. M.
- Journal of the American Chemical Society, Vol. 138, Issue 7
Changing the Mechanism for CO 2 Hydrogenation Using Solvent-Dependent Thermodynamics
journal, October 2017
- Burgess, Samantha A.; Appel, Aaron M.; Linehan, John C.
- Angewandte Chemie International Edition, Vol. 56, Issue 47
Low-Temperature Hydrogenation of Carbon Dioxide to Methanol with a Homogeneous Cobalt Catalyst
journal, January 2017
- Schneidewind, Jacob; Adam, Rosa; Baumann, Wolfgang
- Angewandte Chemie, Vol. 129, Issue 7
Mechanistic investigation of CO2 hydrogenation by Ru(ii) and Ir(iii) aqua complexes under acidic conditions: two catalytic systems differing in the nature of the rate determining step
journal, January 2006
- Ogo, Seiji; Kabe, Ryota; Hayashi, Hideki
- Dalton Transactions, Issue 39
CO 2 capture by amines in aqueous media and its subsequent conversion to formate with reusable ruthenium and iron catalysts
journal, January 2016
- Kothandaraman, Jotheeswari; Goeppert, Alain; Czaun, Miklos
- Green Chemistry, Vol. 18, Issue 21
Homogeneous hydrogenation of aqueous hydrogen carbonate to formate under exceedingly mild conditions—a novel possibility of carbon dioxide activation†
journal, January 1999
- Joó, Ferenc; Joó, Ferenc; Nádasdi, Levente
- Chemical Communications, Issue 11
Synthesis and properties of [Ru(tpy)(4,4′-X2bpy)H]+ (tpy=2,2′:6′,2″-terpyridine, bpy=2,2′-bipyridine, X=H and MeO), and their reactions with CO2
journal, March 2000
- Konno, Hideo; Kobayashi, Atsuo; Sakamoto, Kazuhiko
- Inorganica Chimica Acta, Vol. 299, Issue 2
Selective CO 2 Hydrogenation to Formic Acid with Multifunctional Ionic Liquids
journal, January 2018
- Weilhard, Andreas; Qadir, Muhammad I.; Sans, Victor
- ACS Catalysis, Vol. 8, Issue 3
Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols
journal, October 2017
- Sordakis, Katerina; Tang, Conghui; Vogt, Lydia K.
- Chemical Reviews, Vol. 118, Issue 2
Amine-Free Reversible Hydrogen Storage in Formate Salts Catalyzed by Ruthenium Pincer Complex without pH Control or Solvent Change
journal, March 2015
- Kothandaraman, Jotheeswari; Czaun, Miklos; Goeppert, Alain
- ChemSusChem, Vol. 8, Issue 8
Predicting the reactivity of hydride donors in water: thermodynamic constants for hydrogen
journal, January 2015
- Connelly, Samantha J.; Wiedner, Eric S.; Appel, Aaron M.
- Dalton Transactions, Vol. 44, Issue 13
Investigation of Hydrogenation of Formic Acid to Methanol using H 2 or Formic Acid as a Hydrogen Source
journal, January 2017
- Tsurusaki, Akihiro; Murata, Kazuhisa; Onishi, Naoya
- ACS Catalysis, Vol. 7, Issue 2
Solvation Effects on Transition Metal Hydricity
journal, November 2015
- Tsay, Charlene; Livesay, Brooke N.; Ruelas, Samantha
- Journal of the American Chemical Society, Vol. 137, Issue 44