DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High performance terahertz metasurface quantum-cascade VECSEL with an intra-cryostat cavity

Abstract

A terahertz quantum-cascade (QC) vertical-external-cavity surface-emitting-laser (VECSEL) is demonstrated with over 5 mW power in continuous-wave and single-mode operation above 77 K, in combination with a near-Gaussian beam pattern with full-width half-max divergence as narrow as ~5° × 5°, with no evidence of thermal lensing. This is realized by creating an intra-cryostat VECSEL cavity to reduce the cavity loss and designing an active focusing metasurface reflector with low power dissipation for efficient heat removal. Compared with a conventional quantumcascade laser based on a metal-metal waveguide, the intra-cryostat QC-VECSEL exhibits significant improvements in both output power level and beam pattern. Also, the intra-cryostat configuration newly allows evaluation of QC-VECSEL operation vs. temperature, showing a maximum pulsed mode operating temperature of 129 K. While the threshold current density in the QC-VECSEL is worse in comparison to a conventional edge-emitting metal-metal waveguide QClaser, the beam quality, slope efficiency, maximum power, and thermal resistance are all significantly improved.

Authors:
ORCiD logo [1];  [1];  [2]; ORCiD logo [1]
  1. Univ. of California, Los Angeles, CA (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1399509
Report Number(s):
SAND-2017-6878J
Journal ID: ISSN 0003-6951; 654903
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 111; Journal Issue: 10; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

Xu, Luyao, Curwen, Christopher A., Reno, John L., and Williams, Benjamin S. High performance terahertz metasurface quantum-cascade VECSEL with an intra-cryostat cavity. United States: N. p., 2017. Web. doi:10.1063/1.4993600.
Xu, Luyao, Curwen, Christopher A., Reno, John L., & Williams, Benjamin S. High performance terahertz metasurface quantum-cascade VECSEL with an intra-cryostat cavity. United States. https://doi.org/10.1063/1.4993600
Xu, Luyao, Curwen, Christopher A., Reno, John L., and Williams, Benjamin S. Mon . "High performance terahertz metasurface quantum-cascade VECSEL with an intra-cryostat cavity". United States. https://doi.org/10.1063/1.4993600. https://www.osti.gov/servlets/purl/1399509.
@article{osti_1399509,
title = {High performance terahertz metasurface quantum-cascade VECSEL with an intra-cryostat cavity},
author = {Xu, Luyao and Curwen, Christopher A. and Reno, John L. and Williams, Benjamin S.},
abstractNote = {A terahertz quantum-cascade (QC) vertical-external-cavity surface-emitting-laser (VECSEL) is demonstrated with over 5 mW power in continuous-wave and single-mode operation above 77 K, in combination with a near-Gaussian beam pattern with full-width half-max divergence as narrow as ~5° × 5°, with no evidence of thermal lensing. This is realized by creating an intra-cryostat VECSEL cavity to reduce the cavity loss and designing an active focusing metasurface reflector with low power dissipation for efficient heat removal. Compared with a conventional quantumcascade laser based on a metal-metal waveguide, the intra-cryostat QC-VECSEL exhibits significant improvements in both output power level and beam pattern. Also, the intra-cryostat configuration newly allows evaluation of QC-VECSEL operation vs. temperature, showing a maximum pulsed mode operating temperature of 129 K. While the threshold current density in the QC-VECSEL is worse in comparison to a conventional edge-emitting metal-metal waveguide QClaser, the beam quality, slope efficiency, maximum power, and thermal resistance are all significantly improved.},
doi = {10.1063/1.4993600},
journal = {Applied Physics Letters},
number = 10,
volume = 111,
place = {United States},
year = {Mon Sep 04 00:00:00 EDT 2017},
month = {Mon Sep 04 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

4.7-THz Local Oscillator for the GREAT Heterodyne Spectrometer on SOFIA
journal, July 2015

  • Richter, Heiko; Wienold, Martin; Schrottke, Lutz
  • IEEE Transactions on Terahertz Science and Technology, Vol. 5, Issue 4
  • DOI: 10.1109/TTHZ.2015.2442155

Perfectly phase-matched third-order distributed feedback terahertz quantum-cascade lasers
journal, January 2012

  • Kao, Tsung-Yu; Hu, Qing; Reno, John L.
  • Optics Letters, Vol. 37, Issue 11
  • DOI: 10.1364/OL.37.002070

Real-time terahertz imaging over a standoff distance (>25meters)
journal, October 2006

  • Lee, Alan W. M.; Qin, Qi; Kumar, Sushil
  • Applied Physics Letters, Vol. 89, Issue 14
  • DOI: 10.1063/1.2360210

Terahertz quantum cascade lasers with >1 W output powers
journal, February 2014

  • Valavanis, A.; Zhu, Jingxuan; Freeman, J.
  • Electronics Letters, Vol. 50, Issue 4
  • DOI: 10.1049/el.2013.4035

Semiconducting and other major properties of gallium arsenide
journal, October 1982

  • Blakemore, J. S.
  • Journal of Applied Physics, Vol. 53, Issue 10
  • DOI: 10.1063/1.331665

Low divergence Terahertz photonic-wire laser
journal, January 2010

  • Amanti, Maria I.; Scalari, Giacomo; Castellano, Fabrizio
  • Optics Express, Vol. 18, Issue 6
  • DOI: 10.1364/OE.18.006390

Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures
journal, January 2012

  • Xu, Gangyi; Colombelli, Raffaele; Khanna, Suraj P.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1958

High-power λ∼9.5μm quantum-cascade lasers operating above room temperature in continuous-wave mode
journal, February 2006

  • Yu, J. S.; Slivken, S.; Evans, A.
  • Applied Physics Letters, Vol. 88, Issue 9
  • DOI: 10.1063/1.2180873

Terahertz quantum-cascade lasers
journal, September 2007


Multi-Watt high-power THz frequency quantum cascade lasers
journal, June 2017

  • Li, L. H.; Chen, L.; Freeman, J. R.
  • Electronics Letters, Vol. 53, Issue 12
  • DOI: 10.1049/el.2017.0662

Metasurface external cavity laser
journal, November 2015

  • Xu, Luyao; Curwen, Christopher A.; Hon, Philip W. C.
  • Applied Physics Letters, Vol. 107, Issue 22
  • DOI: 10.1063/1.4936887

Metasurface quantum-cascade laser with electrically switchable polarization
journal, January 2017


Antenna coupled photonic wire lasers
journal, January 2015

  • Kao, Tsung-Yu; Cai, Xiaowei; Lee, Alan W. M.
  • Optics Express, Vol. 23, Issue 13
  • DOI: 10.1364/OE.23.017091

Focusing metasurface quantum-cascade laser with a near diffraction-limited beam
journal, January 2016


High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode
journal, July 2016

  • Wang, Xuemin; Shen, Changle; Jiang, Tao
  • AIP Advances, Vol. 6, Issue 7
  • DOI: 10.1063/1.4959195

Nondestructive evaluation of cork enclosures using terahertz/millimeter wave spectroscopy and imaging
journal, December 2007

  • Hor, Yew Li; Federici, John F.; Wample, Robert L.
  • Applied Optics, Vol. 47, Issue 1
  • DOI: 10.1364/AO.47.000072

Absorption-sensitive diffuse reflection imaging of concealed powders using a terahertz quantum cascade laser
journal, January 2008

  • Dean, Paul; Shaukat, Muhammad U.; Khanna, Suraj P.
  • Optics Express, Vol. 16, Issue 9
  • DOI: 10.1364/OE.16.005997

Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators
journal, March 2005

  • Kohen, Stephen; Williams, Benjamin S.; Hu, Qing
  • Journal of Applied Physics, Vol. 97, Issue 5
  • DOI: 10.1063/1.1855394

Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range
journal, February 2007

  • Chassagneux, Y.; Palomo, J.; Colombelli, R.
  • Applied Physics Letters, Vol. 90, Issue 9
  • DOI: 10.1063/1.2710754

Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions
journal, April 2006

  • Adam, A. J. L.; Kašalynas, I.; Hovenier, J. N.
  • Applied Physics Letters, Vol. 88, Issue 15
  • DOI: 10.1063/1.2194889

Biomedical terahertz imaging with a quantum cascade laser
journal, April 2006

  • Kim, Seongsin M.; Hatami, Fariba; Harris, James S.
  • Applied Physics Letters, Vol. 88, Issue 15
  • DOI: 10.1063/1.2194229

Terahertz Metasurface Quantum-Cascade VECSELs: Theory and Performance
journal, November 2017

  • Xu, Luyao; Curwen, Christopher A.; Chen, Daguan
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 23, Issue 6
  • DOI: 10.1109/JSTQE.2017.2693024

Quantum cascade lasers with double metal-semiconductor waveguide resonators
journal, April 2002

  • Unterrainer, Karl; Colombelli, Raffaele; Gmachl, Claire
  • Applied Physics Letters, Vol. 80, Issue 17
  • DOI: 10.1063/1.1469657

Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations
journal, July 2006

  • Vitiello, Miriam S.; Scamarcio, Gaetano; Spagnolo, Vincenzo
  • Applied Physics Letters, Vol. 89, Issue 2
  • DOI: 10.1063/1.2220546

Effective far infrared laser operation with mesh couplers
journal, January 1992


Terahertz semiconductor-heterostructure laser
journal, May 2002

  • Köhler, Rüdeger; Tredicucci, Alessandro; Beltram, Fabio
  • Nature, Vol. 417, Issue 6885
  • DOI: 10.1038/417156a

Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode
journal, January 2005


Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer
journal, June 2005

  • Gao, J. R.; Hovenier, J. N.; Yang, Z. Q.
  • Applied Physics Letters, Vol. 86, Issue 24
  • DOI: 10.1063/1.1949724

Thermal lensing, thermal management and transverse mode control in microchip VECSELs
journal, March 2006


Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage
journal, December 2009


Distributed-feedback terahertz quantum-cascade lasers with laterally corrugated metal waveguides
journal, January 2005

  • Williams, Benjamin S.; Kumar, Sushil; Hu, Qing
  • Optics Letters, Vol. 30, Issue 21
  • DOI: 10.1364/OL.30.002909

Simultaneously at two wavelengths (5.0 and 7.5  [micro sign]m) singlemode and tunable quantum cascade distributed feedback lasers
journal, January 2002

  • Straub, A.; Gmachl, C.; Sivco, D. L.
  • Electronics Letters, Vol. 38, Issue 12
  • DOI: 10.1049/el:20020355

Works referencing / citing this record:

Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL
journal, September 2019

  • Curwen, Christopher A.; Reno, John L.; Williams, Benjamin S.
  • Nature Photonics, Vol. 13, Issue 12
  • DOI: 10.1038/s41566-019-0518-z

Terahertz quantum cascade VECSEL with watt-level output power
journal, July 2018

  • Curwen, Christopher A.; Reno, John L.; Williams, Benjamin S.
  • Applied Physics Letters, Vol. 113, Issue 1
  • DOI: 10.1063/1.5033910

THz Emission by Frequency Down-conversion in Topological Insulator Quantum Dots
journal, September 2019