skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Terahertz quantum cascade VECSEL with watt-level output power

Abstract

Here, we report a terahertz quantum-cascade vertical-external-cavity surface-emitting laser (QC-VECSEL) whose output power is scaled up to watt-level by using an amplifying metasurface designed for increased power density. The metasurface is composed of a subwavelength array of metal-metal waveguide antenna-coupled sub-cavities loaded with a terahertz quantum-cascade gain material. Unlike previously demonstrated THz QC-VECSELs, the sub-cavities operate on their third-order lateral modal resonance (TM03), instead of their first-order (TM01) resonance. This results in a metasurface with a higher spatial density of the gain material, leading to an increased output power per metasurface area. In pulsed mode operation, peak THz output powers up to 830 mW at 77 K and 1.35 W at 6 K are observed, while a single-mode spectrum and a low divergence beam pattern are maintained. In addition, piezoelectric control of the cavity length allows approximately 50 GHz of continuous, single-mode tuning without a significant effect on output power or beam quality.

Authors:
 [1];  [2]; ORCiD logo [1]
  1. Univ. of California, Los Angeles, CA (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1459988
Report Number(s):
SAND2018-4641J
Journal ID: ISSN 0003-6951; 662743
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 113; Journal Issue: 1; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Curwen, Christopher A., Reno, John L., and Williams, Benjamin S. Terahertz quantum cascade VECSEL with watt-level output power. United States: N. p., 2018. Web. doi:10.1063/1.5033910.
Curwen, Christopher A., Reno, John L., & Williams, Benjamin S. Terahertz quantum cascade VECSEL with watt-level output power. United States. doi:https://doi.org/10.1063/1.5033910
Curwen, Christopher A., Reno, John L., and Williams, Benjamin S. Mon . "Terahertz quantum cascade VECSEL with watt-level output power". United States. doi:https://doi.org/10.1063/1.5033910. https://www.osti.gov/servlets/purl/1459988.
@article{osti_1459988,
title = {Terahertz quantum cascade VECSEL with watt-level output power},
author = {Curwen, Christopher A. and Reno, John L. and Williams, Benjamin S.},
abstractNote = {Here, we report a terahertz quantum-cascade vertical-external-cavity surface-emitting laser (QC-VECSEL) whose output power is scaled up to watt-level by using an amplifying metasurface designed for increased power density. The metasurface is composed of a subwavelength array of metal-metal waveguide antenna-coupled sub-cavities loaded with a terahertz quantum-cascade gain material. Unlike previously demonstrated THz QC-VECSELs, the sub-cavities operate on their third-order lateral modal resonance (TM03), instead of their first-order (TM01) resonance. This results in a metasurface with a higher spatial density of the gain material, leading to an increased output power per metasurface area. In pulsed mode operation, peak THz output powers up to 830 mW at 77 K and 1.35 W at 6 K are observed, while a single-mode spectrum and a low divergence beam pattern are maintained. In addition, piezoelectric control of the cavity length allows approximately 50 GHz of continuous, single-mode tuning without a significant effect on output power or beam quality.},
doi = {10.1063/1.5033910},
journal = {Applied Physics Letters},
number = 1,
volume = 113,
place = {United States},
year = {2018},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions
journal, April 2006

  • Adam, A. J. L.; Kašalynas, I.; Hovenier, J. N.
  • Applied Physics Letters, Vol. 88, Issue 15
  • DOI: 10.1063/1.2194889

Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions
journal, January 2009

  • Chassagneux, Y.; Colombelli, R.; Maineult, W.
  • Nature, Vol. 457, Issue 7226
  • DOI: 10.1038/nature07636

Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinement
journal, September 2003

  • Williams, Benjamin S.; Kumar, Sushil; Callebaut, Hans
  • Applied Physics Letters, Vol. 83, Issue 11
  • DOI: 10.1063/1.1611642

Discrete mode tuning in terahertz quantum cascade lasers
journal, January 2012

  • Chakraborty, Subhasish; Marshall, Owen; Hsin, Chen Wei
  • Optics Express, Vol. 20, Issue 26
  • DOI: 10.1364/OE.20.00B306

Terahertz Metasurface Quantum-Cascade VECSELs: Theory and Performance
journal, November 2017

  • Xu, Luyao; Curwen, Christopher A.; Chen, Daguan
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 23, Issue 6
  • DOI: 10.1109/JSTQE.2017.2693024

Terahertz photonic crystal quantum cascade lasers
journal, January 2007

  • Zhang, Hua; Dunbar, L. Andrea; Scalari, Giacomo
  • Optics Express, Vol. 15, Issue 25
  • DOI: 10.1364/OE.15.016818

Terahertz quantum cascade lasers with >1 W output powers
journal, February 2014

  • Valavanis, A.; Zhu, Jingxuan; Freeman, J.
  • Electronics Letters, Vol. 50, Issue 4
  • DOI: 10.1049/el.2013.4035

Graded photonic crystal terahertz quantum cascade lasers
journal, January 2010

  • Chassagneux, Y.; Colombelli, R.; Maineult, W.
  • Applied Physics Letters, Vol. 96, Issue 3
  • DOI: 10.1063/1.3273056

High performance terahertz metasurface quantum-cascade VECSEL with an intra-cryostat cavity
journal, September 2017

  • Xu, Luyao; Curwen, Christopher A.; Reno, John L.
  • Applied Physics Letters, Vol. 111, Issue 10
  • DOI: 10.1063/1.4993600

Terahertz semiconductor-heterostructure laser
journal, May 2002

  • Köhler, Rüdeger; Tredicucci, Alessandro; Beltram, Fabio
  • Nature, Vol. 417, Issue 6885
  • DOI: 10.1038/417156a

Multi-Watt high-power THz frequency quantum cascade lasers
journal, June 2017

  • Li, L. H.; Chen, L.; Freeman, J. R.
  • Electronics Letters, Vol. 53, Issue 12
  • DOI: 10.1049/el.2017.0662

Metasurface external cavity laser
journal, November 2015

  • Xu, Luyao; Curwen, Christopher A.; Hon, Philip W. C.
  • Applied Physics Letters, Vol. 107, Issue 22
  • DOI: 10.1063/1.4936887

Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode
journal, January 2005


Tunable terahertz quantum cascade lasers with external gratings
journal, January 2010

  • Lee, Alan Wei Min; Williams, Benjamin S.; Kumar, Sushil
  • Optics Letters, Vol. 35, Issue 7
  • DOI: 10.1364/OL.35.000910

Focusing metasurface quantum-cascade laser with a near diffraction-limited beam
journal, January 2016


Low-divergence single-mode terahertz quantum cascade laser
journal, September 2009


Quantum cascade lasers: 20 years of challenges
journal, January 2015

  • Vitiello, Miriam Serena; Scalari, Giacomo; Williams, Benjamin
  • Optics Express, Vol. 23, Issue 4
  • DOI: 10.1364/OE.23.005167

Radiation Model for Terahertz Transmission-Line Metamaterial Quantum-Cascade Lasers
journal, May 2012

  • Hon, Philip W. C.; Tavallaee, Amir A.; Chen, Qi-Sheng
  • IEEE Transactions on Terahertz Science and Technology, Vol. 2, Issue 3
  • DOI: 10.1109/TTHZ.2012.2191023

Characterizing the beam properties of terahertz quantum-cascade lasers
journal, July 2014

  • Richter, H.; Rothbart, N.; Hübers, H. -W.
  • Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 35, Issue 8
  • DOI: 10.1007/s10762-014-0084-x

A patch-array antenna single-mode low electrical dissipation continuous wave terahertz quantum cascade laser
journal, November 2016

  • Bosco, L.; Bonzon, C.; Ohtani, K.
  • Applied Physics Letters, Vol. 109, Issue 20
  • DOI: 10.1063/1.4967836

Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage
journal, December 2009


    Works referencing / citing this record:

    Photonic Engineering Technology for the Development of Terahertz Quantum Cascade Lasers
    journal, July 2019

    • Zeng, Yongquan; Qiang, Bo; Wang, Qi Jie
    • Advanced Optical Materials, Vol. 8, Issue 3
    • DOI: 10.1002/adom.201900573

    Phase-locked photonic wire lasers by π coupling
    journal, December 2018


    Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL
    journal, September 2019

    • Curwen, Christopher A.; Reno, John L.; Williams, Benjamin S.
    • Nature Photonics, Vol. 13, Issue 12
    • DOI: 10.1038/s41566-019-0518-z

    Terahertz quantum-cascade lasers for high-resolution spectroscopy of sharp absorption lines
    journal, April 2019

    • Röben, B.; Lü, X.; Biermann, K.
    • Journal of Applied Physics, Vol. 125, Issue 15
    • DOI: 10.1063/1.5079701

    High-resolution terahertz spectroscopy with quantum-cascade lasers
    journal, April 2019

    • Hübers, H. -W.; Richter, H.; Wienold, M.
    • Journal of Applied Physics, Vol. 125, Issue 15
    • DOI: 10.1063/1.5084105

    High-intensity and low-divergence THz laser with 1D autofocusing symmetric Airy beams
    journal, January 2019