DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Plasmons in graphene nanoribbons

Abstract

We calculate the dielectric function and plasmonic response of armchair (aGNRs) and zigzag (zGNRs) graphene nanoribbons using the self-consistent-field approach within the Markovian master equation formalism (SCF-MMEF). We accurately account for electron scattering with phonons, ionized impurities, and line-edge roughness and show that electron scattering with surface optical phonons is much more prominent in GNRs than in graphene. We calculate the loss function, plasmon dispersion, and the plasmon propagation length in supported GNRs. Midinfrared plasmons in supported (3N+2)-aGNRs can propagate as far as several microns at room temperature, with 4–5-nm-wide ribbons having the longest propagation length. In other types of aGNRs and in zGNRs, the plasmon propagation length seldom exceeds 100 nm. Plasmon propagation lengths are much longer on nonpolar (e.g., diamondlike carbon) than on polar substrates (e.g., SiO2 or hBN), where electrons scatter strongly with surface optical phonons. In conclusion, we also show that the aGNR plasmon density is nearly uniform across the ribbon, while in zGNRs, because of the highly localized edge states, plasmons of different spin polarization are accumulated near the opposite edges.

Authors:
 [1];  [1]
  1. Univ. of Wisconsin-Madison, Madison, WI (United States)
Publication Date:
Research Org.:
Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1434269
Alternate Identifier(s):
OSTI ID: 1389682
Grant/Contract Number:  
SC0008712
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 96; Journal Issue: 12; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Karimi, F., and Knezevic, I. Plasmons in graphene nanoribbons. United States: N. p., 2017. Web. doi:10.1103/PhysRevB.96.125417.
Karimi, F., & Knezevic, I. Plasmons in graphene nanoribbons. United States. https://doi.org/10.1103/PhysRevB.96.125417
Karimi, F., and Knezevic, I. Tue . "Plasmons in graphene nanoribbons". United States. https://doi.org/10.1103/PhysRevB.96.125417. https://www.osti.gov/servlets/purl/1434269.
@article{osti_1434269,
title = {Plasmons in graphene nanoribbons},
author = {Karimi, F. and Knezevic, I.},
abstractNote = {We calculate the dielectric function and plasmonic response of armchair (aGNRs) and zigzag (zGNRs) graphene nanoribbons using the self-consistent-field approach within the Markovian master equation formalism (SCF-MMEF). We accurately account for electron scattering with phonons, ionized impurities, and line-edge roughness and show that electron scattering with surface optical phonons is much more prominent in GNRs than in graphene. We calculate the loss function, plasmon dispersion, and the plasmon propagation length in supported GNRs. Midinfrared plasmons in supported (3N+2)-aGNRs can propagate as far as several microns at room temperature, with 4–5-nm-wide ribbons having the longest propagation length. In other types of aGNRs and in zGNRs, the plasmon propagation length seldom exceeds 100 nm. Plasmon propagation lengths are much longer on nonpolar (e.g., diamondlike carbon) than on polar substrates (e.g., SiO2 or hBN), where electrons scatter strongly with surface optical phonons. In conclusion, we also show that the aGNR plasmon density is nearly uniform across the ribbon, while in zGNRs, because of the highly localized edge states, plasmons of different spin polarization are accumulated near the opposite edges.},
doi = {10.1103/PhysRevB.96.125417},
journal = {Physical Review B},
number = 12,
volume = 96,
place = {United States},
year = {Tue Sep 12 00:00:00 EDT 2017},
month = {Tue Sep 12 00:00:00 EDT 2017}
}

Journal Article:

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Classical and quantum plasmonics in graphene nanodisks: Role of edge states
journal, December 2014


Plasmonics-A Route to Nanoscale Optical Devices
journal, September 2001


Antennas for light
journal, February 2011


Damping pathways of mid-infrared plasmons in graphene nanostructures
journal, April 2013


Graphene Plasmonics: A Platform for Strong Light–Matter Interactions
journal, August 2011

  • Koppens, Frank H. L.; Chang, Darrick E.; García de Abajo, F. Javier
  • Nano Letters, Vol. 11, Issue 8
  • DOI: 10.1021/nl201771h

Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography
journal, June 2008

  • Tapasztó, Levente; Dobrik, Gergely; Lambin, Philippe
  • Nature Nanotechnology, Vol. 3, Issue 7
  • DOI: 10.1038/nnano.2008.149

Theory of surface plasmarons
journal, February 1980


Electron–Phonon Interaction in Dielectric Bilayer Systems. Effect of the Electronic Polarizability
journal, June 1985


Splashing transients of 2D plasmons launched by swift electrons
journal, January 2017


Mid-infrared plasmonic biosensing with graphene
journal, July 2015


Bottom-up graphene nanoribbon field-effect transistors
journal, December 2013

  • Bennett, Patrick B.; Pedramrazi, Zahra; Madani, Ali
  • Applied Physics Letters, Vol. 103, Issue 25
  • DOI: 10.1063/1.4855116

Plasmonics for near-field nano-imaging and superlensing
journal, July 2009


Ultra-narrow metallic armchair graphene nanoribbons
journal, December 2015

  • Kimouche, Amina; Ervasti, Mikko M.; Drost, Robert
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10177

All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures
journal, June 2017

  • Lin, Xiao; Yang, Yi; Rivera, Nicholas
  • Proceedings of the National Academy of Sciences
  • DOI: 10.1073/pnas.1701830114

Polaritons in layered two-dimensional materials
journal, November 2016

  • Low, Tony; Chaves, Andrey; Caldwell, Joshua D.
  • Nature Materials, Vol. 16, Issue 2
  • DOI: 10.1038/nmat4792

Quantum nonlocal effects in individual and interacting graphene nanoribbons
journal, January 2015

  • Silveiro, Iván; Ortega, Juan Manuel Plaza; de Abajo, F. Javier García
  • Light: Science & Applications, Vol. 4, Issue 1
  • DOI: 10.1038/lsa.2015.14

Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors
journal, February 2008


Plasmonics in graphene at infrared frequencies
journal, December 2009


Exciton-dominated optical response of ultra-narrow graphene nanoribbons
journal, July 2014

  • Denk, Richard; Hohage, Michael; Zeppenfeld, Peter
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5253

Electron optical-phonon interaction in single and double heterostructures
journal, September 1989


Achieving transparency with plasmonic and metamaterial coatings
journal, July 2005


Elementary electronic excitations in graphene nanoribbons
journal, March 2007


Plasmonics for extreme light concentration and manipulation
journal, February 2010

  • Schuller, Jon A.; Barnard, Edward S.; Cai, Wenshan
  • Nature Materials, Vol. 9, Issue 3
  • DOI: 10.1038/nmat2630

Graphene Plasmonics for Terahertz to Mid-Infrared Applications
journal, January 2014


Tunable Terahertz Meta-Surface with Graphene Cut-Wires
journal, January 2015

  • Fan, Yuancheng; Shen, Nian-Hai; Koschny, Thomas
  • ACS Photonics, Vol. 2, Issue 1
  • DOI: 10.1021/ph500366z

Plasmonics beyond the diffraction limit
journal, January 2010

  • Gramotnev, Dmitri K.; Bozhevolnyi, Sergey I.
  • Nature Photonics, Vol. 4, Issue 2, p. 83-91
  • DOI: 10.1038/nphoton.2009.282

The electronic properties of graphene
journal, January 2009

  • Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.
  • Reviews of Modern Physics, Vol. 81, Issue 1, p. 109-162
  • DOI: 10.1103/RevModPhys.81.109

Strong mobility degradation in ideal graphene nanoribbons due to phonon scattering
journal, May 2011

  • Betti, A.; Fiori, G.; Iannaccone, G.
  • Applied Physics Letters, Vol. 98, Issue 21
  • DOI: 10.1063/1.3587627

Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors
journal, May 2008


Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures
journal, July 2005

  • Maier, Stefan A.; Atwater, Harry A.
  • Journal of Applied Physics, Vol. 98, Issue 1
  • DOI: 10.1063/1.1951057

Rational Fabrication of Graphene Nanoribbons Using a Nanowire Etch Mask
journal, May 2009

  • Bai, Jingwei; Duan, Xiangfeng; Huang, Yu
  • Nano Letters, Vol. 9, Issue 5
  • DOI: 10.1021/nl900531n

Biosensing with plasmonic nanosensors
journal, June 2008

  • Anker, Jeffrey N.; Hall, W. Paige; Lyandres, Olga
  • Nature Materials, Vol. 7, Issue 6
  • DOI: 10.1038/nmat2162

Theory of interfacial plasmon-phonon scattering in supported graphene
journal, October 2012


Plasmon dispersion in semimetallic armchair graphene nanoribbons
journal, February 2012


Lindhard Dielectric Function in the Relaxation-Time Approximation
journal, March 1970


Quantum Finite-Size Effects in Graphene Plasmons
journal, January 2012

  • Thongrattanasiri, Sukosin; Manjavacas, Alejandro; García de Abajo, F. Javier
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn204780e

Optical negative-index metamaterials
journal, January 2007


Energy Gaps in Graphene Nanoribbons
journal, November 2006


Plasmonic nanorod metamaterials for biosensing
journal, October 2009

  • Kabashin, A. V.; Evans, P.; Pastkovsky, S.
  • Nature Materials, Vol. 8, Issue 11
  • DOI: 10.1038/nmat2546

Dielectric function and plasmons in graphene: A self-consistent-field calculation within a Markovian master equation formalism
journal, May 2016


On-surface synthesis of graphene nanoribbons with zigzag edge topology
journal, March 2016

  • Ruffieux, Pascal; Wang, Shiyong; Yang, Bo
  • Nature, Vol. 531, Issue 7595
  • DOI: 10.1038/nature17151

Plasmonics for improved photovoltaic devices
journal, February 2010

  • Atwater, Harry A.; Polman, Albert
  • Nature Materials, Vol. 9, Issue 3, p. 205-213
  • DOI: 10.1038/nmat2629

Flat optics with designer metasurfaces
journal, February 2014

  • Yu, Nanfang; Capasso, Federico
  • Nature Materials, Vol. 13, Issue 2, p. 139-150
  • DOI: 10.1038/nmat3839

Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos
journal, September 2015

  • Sundvik, Maria; Nieminen, Heikki J.; Salmi, Ari
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep13596

Graphene plasmonics
journal, November 2012

  • Grigorenko, A. N.; Polini, M.; Novoselov, K. S.
  • Nature Photonics, Vol. 6, Issue 11, p. 749-758
  • DOI: 10.1038/nphoton.2012.262

Plasmon modes and screening in double metallic armchair graphene nanoribbons
journal, October 2013


Bottom-Up Synthesis of N = 13 Sulfur-Doped Graphene Nanoribbons
journal, January 2016

  • Nguyen, Giang D.; Toma, Francesca M.; Cao, Ting
  • The Journal of Physical Chemistry C, Vol. 120, Issue 5
  • DOI: 10.1021/acs.jpcc.5b09986

Graphene plasmonics for tunable terahertz metamaterials
journal, September 2011


Quantum Theory of Electrical Transport Phenomena
journal, November 1957


Collective modes of massive Dirac fermions in armchair graphene nanoribbons
journal, December 2012


Atomically precise bottom-up fabrication of graphene nanoribbons
journal, July 2010

  • Cai, Jinming; Ruffieux, Pascal; Jaafar, Rached
  • Nature, Vol. 466, Issue 7305
  • DOI: 10.1038/nature09211

Tight-Binding Parameters for Graphene
journal, January 2011


Graphene nanoribbons: fabrication, properties and devices
journal, March 2016


Highly confined and tunable plasmonic waveguide ring resonator based on graphene nanoribbons
journal, May 2014


Graphene Plasmonics: Challenges and Opportunities
journal, February 2014


The Fano resonance in plasmonic nanostructures and metamaterials
journal, August 2010

  • Luk'yanchuk, Boris; Zheludev, Nikolay I.; Maier, Stefan A.
  • Nature Materials, Vol. 9, Issue 9
  • DOI: 10.1038/nmat2810

Electron Scattering from Surface Excitations
journal, December 1972


Electronic properties of two-dimensional systems
journal, April 1982


Correlating Atomic Structure and Transport in Suspended Graphene Nanoribbons
journal, June 2014

  • Qi, Zhengqing John; Rodríguez-Manzo, Julio A.; Botello-Méndez, Andrés R.
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl501872x

Plasmon Modes of Graphene Nanoribbons with Periodic Planar Arrangements
journal, September 2016


Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons
journal, October 2014

  • Magda, Gábor Zsolt; Jin, Xiaozhan; Hagymási, Imre
  • Nature, Vol. 514, Issue 7524
  • DOI: 10.1038/nature13831

Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures
journal, June 2014

  • Brar, Victor W.; Jang, Min Seok; Sherrott, Michelle
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl501096s

Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with a high-κ insulator: The role of remote phonon scattering
journal, November 2001

  • Fischetti, Massimo V.; Neumayer, Deborah A.; Cartier, Eduard A.
  • Journal of Applied Physics, Vol. 90, Issue 9
  • DOI: 10.1063/1.1405826

Electron-phonon interaction in a dielectric slab: Effect of the electronic polarizability
journal, February 1977


Tailoring the energy distribution and loss of 2D plasmons
journal, October 2016


Electron polarization function and plasmons in metallic armchair graphene nanoribbons
journal, May 2015


Generalized tight-binding transport model for graphene nanoribbon-based systems
journal, June 2010


Plasmons in spatially separated double-layer graphene nanoribbons
journal, May 2014

  • Bagheri, Mehran; Bahrami, Mousa
  • Journal of Applied Physics, Vol. 115, Issue 17
  • DOI: 10.1063/1.4873639

Plasmonics: Fundamentals and Applications
book, January 2007


Works referencing / citing this record:

Emergent scale invariance of nonclassical plasmons in graphene nanoribbons
journal, October 2018

  • Wedel, Kåre Obel; Mortensen, N. Asger; Thygesen, Kristian S.
  • Physical Review B, Vol. 98, Issue 15
  • DOI: 10.1103/physrevb.98.155412

Emergent scale invariance of non-classical plasmons in graphene nanoribbons
text, January 2018