skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dielectric function and plasmons in graphene: A self-consistent-field calculation within a Markovian master equation formalism

Abstract

We introduce a method for calculating the dielectric function of nanostructures with an arbitrary band dispersion and Bloch wave functions. The linear response of a dissipative electronic system to an external electromagnetic field is calculated by a self-consistent-field approach within a Markovian master equation formalism (SCF-MMEF) coupled with full-wave electromagnetic equations. The SCF-MMEF accurately accounts for several concurrent scattering mechanisms. The method captures interband electron-hole-pair generation, as well as the interband and intraband electron scattering with phonons and impurities. We employ the SCF-MMEF to calculate the dielectric function, complex conductivity, and loss function for supported graphene. From the loss-function maximum, we obtain plasmon dispersion and propagation length for different substrate types [nonpolar diamondlike carbon (DLC) and polar SiO2 and hBN], impurity densities, carrier densities, and temperatures. Plasmons on the two polar substrates are suppressed below the highest surface phonon energy, while the spectrum is broad on the nonpolar DLC. Plasmon propagation lengths are comparable on polar and nonpolar substrates and are on the order of tens of nanometers, considerably shorter than previously reported. As a result, they improve with fewer impurities, at lower temperatures, and at higher carrier densities.

Authors:
 [1];  [1];  [1]
  1. Univ. of Wisconsin-Madison, Madison, WI (United States)
Publication Date:
Research Org.:
Univ. of Wisconsin-Madison, Madison, WI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Contributing Org.:
University of Wisconsin-Madison
OSTI Identifier:
1434260
Alternate Identifier(s):
OSTI ID: 1253024
Grant/Contract Number:  
SC0008712
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 93; Journal Issue: 20; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Karimi, F., Davoody, A. H., and Knezevic, I. Dielectric function and plasmons in graphene: A self-consistent-field calculation within a Markovian master equation formalism. United States: N. p., 2016. Web. doi:10.1103/PhysRevB.93.205421.
Karimi, F., Davoody, A. H., & Knezevic, I. Dielectric function and plasmons in graphene: A self-consistent-field calculation within a Markovian master equation formalism. United States. doi:10.1103/PhysRevB.93.205421.
Karimi, F., Davoody, A. H., and Knezevic, I. Thu . "Dielectric function and plasmons in graphene: A self-consistent-field calculation within a Markovian master equation formalism". United States. doi:10.1103/PhysRevB.93.205421. https://www.osti.gov/servlets/purl/1434260.
@article{osti_1434260,
title = {Dielectric function and plasmons in graphene: A self-consistent-field calculation within a Markovian master equation formalism},
author = {Karimi, F. and Davoody, A. H. and Knezevic, I.},
abstractNote = {We introduce a method for calculating the dielectric function of nanostructures with an arbitrary band dispersion and Bloch wave functions. The linear response of a dissipative electronic system to an external electromagnetic field is calculated by a self-consistent-field approach within a Markovian master equation formalism (SCF-MMEF) coupled with full-wave electromagnetic equations. The SCF-MMEF accurately accounts for several concurrent scattering mechanisms. The method captures interband electron-hole-pair generation, as well as the interband and intraband electron scattering with phonons and impurities. We employ the SCF-MMEF to calculate the dielectric function, complex conductivity, and loss function for supported graphene. From the loss-function maximum, we obtain plasmon dispersion and propagation length for different substrate types [nonpolar diamondlike carbon (DLC) and polar SiO2 and hBN], impurity densities, carrier densities, and temperatures. Plasmons on the two polar substrates are suppressed below the highest surface phonon energy, while the spectrum is broad on the nonpolar DLC. Plasmon propagation lengths are comparable on polar and nonpolar substrates and are on the order of tens of nanometers, considerably shorter than previously reported. As a result, they improve with fewer impurities, at lower temperatures, and at higher carrier densities.},
doi = {10.1103/PhysRevB.93.205421},
journal = {Physical Review B},
number = 20,
volume = 93,
place = {United States},
year = {2016},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Classical and quantum plasmonics in graphene nanodisks: Role of edge states
journal, December 2014


Boron nitride substrates for high mobility chemical vapor deposited graphene
journal, June 2011

  • Gannett, W.; Regan, W.; Watanabe, K.
  • Applied Physics Letters, Vol. 98, Issue 24
  • DOI: 10.1063/1.3599708

Clustered impurities and carrier transport in supported graphene
journal, April 2014


Plasmonics-A Route to Nanoscale Optical Devices
journal, September 2001


Antennas for light
journal, February 2011


Carrier Transport in Two-Dimensional Graphene Layers
journal, May 2007


Graphene Plasmonics: A Platform for Strong Light–Matter Interactions
journal, August 2011

  • Koppens, Frank H. L.; Chang, Darrick E.; García de Abajo, F. Javier
  • Nano Letters, Vol. 11, Issue 8
  • DOI: 10.1021/nl201771h

Damping pathways of mid-infrared plasmons in graphene nanostructures
journal, April 2013


Normal Modes in Hexagonal Boron Nitride
journal, June 1966


Interpretation of Infrared Transmittance Spectra of SiO 2 Thin Films
journal, January 1994


Searching for better plasmonic materials
journal, March 2010


Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene
journal, June 2012

  • Ren, Lei; Zhang, Qi; Yao, Jun
  • Nano Letters, Vol. 12, Issue 7
  • DOI: 10.1021/nl301496r

Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy
journal, December 2000

  • Beard, Matthew C.; Turner, Gordon M.; Schmuttenmaer, Charles A.
  • Physical Review B, Vol. 62, Issue 23
  • DOI: 10.1103/PhysRevB.62.15764

Terahertz graphene optics
journal, September 2012


Plasmonics for near-field nano-imaging and superlensing
journal, July 2009


Linear Plasmon Dispersion in Single-Wall Carbon Nanotubes and the Collective Excitation Spectrum of Graphene
journal, May 2008


Effect of high- κ gate dielectrics on charge transport in graphene-based field effect transistors
journal, September 2010


Master-equation approach to the study of electronic transport in small semiconductor devices
journal, February 1999


Plasmonics in graphene at infrared frequencies
journal, December 2009


Terahertz-frequency electronic transport in graphene
journal, July 2014


Temperature dependence of the conductivity of graphene on boron nitride
journal, May 2012


Achieving transparency with plasmonic and metamaterial coatings
journal, July 2005


Plasmonics for extreme light concentration and manipulation
journal, February 2010

  • Schuller, Jon A.; Barnard, Edward S.; Cai, Wenshan
  • Nature Materials, Vol. 9, Issue 3
  • DOI: 10.1038/nmat2630

One-Way Electromagnetic Waveguide Formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal
journal, January 2008


Plasmonics in Dirac systems: from graphene to topological insulators
journal, March 2014


Plasmon losses due to electron-phonon scattering: The case of graphene encapsulated in hexagonal boron nitride
journal, October 2014


Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature
journal, June 2011

  • Mayorov, Alexander S.; Gorbachev, Roman V.; Morozov, Sergey V.
  • Nano Letters, Vol. 11, Issue 6
  • DOI: 10.1021/nl200758b

Graphene-protected copper and silver plasmonics
journal, July 2014

  • Kravets, V. G.; Jalil, R.; Kim, Y. -J.
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep05517

Graphene Plasmonics for Terahertz to Mid-Infrared Applications
journal, January 2014


Unconventional plasmon-phonon coupling in graphene
journal, April 2011


Interlayer excitonic superfluidity in graphene
journal, December 2013


Plasmonics beyond the diffraction limit
journal, January 2010

  • Gramotnev, Dmitri K.; Bozhevolnyi, Sergey I.
  • Nature Photonics, Vol. 4, Issue 2, p. 83-91
  • DOI: 10.1038/nphoton.2009.282

Cutting-edge terahertz technology
journal, February 2007


The electronic properties of graphene
journal, January 2009

  • Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.
  • Reviews of Modern Physics, Vol. 81, Issue 1, p. 109-162
  • DOI: 10.1103/RevModPhys.81.109

Plasmon-phonon coupling in graphene
journal, November 2010


Boron nitride substrates for high-quality graphene electronics
journal, August 2010

  • Dean, C. R.; Young, A. F.; Meric, I.
  • Nature Nanotechnology, Vol. 5, Issue 10, p. 722-726
  • DOI: 10.1038/nnano.2010.172

The infrared optical properties of SiO 2 and SiO 2 layers on silicon
journal, February 1979

  • Philipp, Herbert R.
  • Journal of Applied Physics, Vol. 50, Issue 2
  • DOI: 10.1063/1.326080

Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures
journal, July 2005

  • Maier, Stefan A.; Atwater, Harry A.
  • Journal of Applied Physics, Vol. 98, Issue 1
  • DOI: 10.1063/1.1951057

Phonon-limited electron mobility in graphene calculated using tight-binding Bloch waves
journal, September 2012

  • Sule, N.; Knezevic, I.
  • Journal of Applied Physics, Vol. 112, Issue 5
  • DOI: 10.1063/1.4747930

Biosensing with plasmonic nanosensors
journal, June 2008

  • Anker, Jeffrey N.; Hall, W. Paige; Lyandres, Olga
  • Nature Materials, Vol. 7, Issue 6
  • DOI: 10.1038/nmat2162

Theory of interfacial plasmon-phonon scattering in supported graphene
journal, October 2012


Lindhard Dielectric Function in the Relaxation-Time Approximation
journal, March 1970


One-Way Extraordinary Optical Transmission and Nonreciprocal Spoof Plasmons
journal, September 2010


Electrical and optical properties of diamond-like carbon
journal, November 1999


Optical negative-index metamaterials
journal, January 2007


π- plasmon dispersion in free-standing graphene by momentum-resolved electron energy-loss spectroscopy
journal, January 2015


Dynamical polarization of graphene at finite doping
journal, December 2006


Plasmonic nanorod metamaterials for biosensing
journal, October 2009

  • Kabashin, A. V.; Evans, P.; Pastkovsky, S.
  • Nature Materials, Vol. 8, Issue 11
  • DOI: 10.1038/nmat2546

Mobility and saturation velocity in graphene on SiO2
journal, August 2010

  • Dorgan, Vincent E.; Bae, Myung-Ho; Pop, Eric
  • Applied Physics Letters, Vol. 97, Issue 8
  • DOI: 10.1063/1.3483130

Highly confined low-loss plasmons in graphene–boron nitride heterostructures
journal, December 2014

  • Woessner, Achim; Lundeberg, Mark B.; Gao, Yuanda
  • Nature Materials, Vol. 14, Issue 4
  • DOI: 10.1038/nmat4169

Graphene: A pseudochiral Fermi liquid
journal, July 2007


Plasmonics for improved photovoltaic devices
journal, February 2010

  • Atwater, Harry A.; Polman, Albert
  • Nature Materials, Vol. 9, Issue 3, p. 205-213
  • DOI: 10.1038/nmat2629

Graphene plasmonics
journal, November 2012

  • Grigorenko, A. N.; Polini, M.; Novoselov, K. S.
  • Nature Photonics, Vol. 6, Issue 11, p. 749-758
  • DOI: 10.1038/nphoton.2012.262

Intrinsic and extrinsic performance limits of graphene devices on SiO2
journal, March 2008

  • Chen, Jian-Hao; Jang, Chaun; Xiao, Shudong
  • Nature Nanotechnology, Vol. 3, Issue 4, p. 206-209
  • DOI: 10.1038/nnano.2008.58

Substrate-limited electron dynamics in graphene
journal, May 2008


Graphene plasmonics for tunable terahertz metamaterials
journal, September 2011


Materials for terahertz science and technology
journal, September 2002

  • Ferguson, Bradley; Zhang, Xi-Cheng
  • Nature Materials, Vol. 1, Issue 1
  • DOI: 10.1038/nmat708

Surface-Plasmon-Assisted Guiding of Broadband Slow and Subwavelength Light in Air
journal, August 2005


Van der Waals heterostructures
journal, July 2013

  • Geim, A. K.; Grigorieva, I. V.
  • Nature, Vol. 499, Issue 7459, p. 419-425
  • DOI: 10.1038/nature12385

Electric Field Effect in Atomically Thin Carbon Films
journal, October 2004


Quantum Theory of Electrical Transport Phenomena
journal, November 1957


Mid-infrared photonics in silicon and germanium
journal, August 2010


A generalized Drude model for doped silicon at terahertz frequencies derived from microscopic transport simulation
journal, March 2013

  • Willis, K. J.; Hagness, S. C.; Knezevic, I.
  • Applied Physics Letters, Vol. 102, Issue 12
  • DOI: 10.1063/1.4798658

Plasmon dispersion on epitaxial graphene studied using high-resolution electron energy-loss spectroscopy
journal, September 2009


State-of-the-Art Graphene High-Frequency Electronics
journal, May 2012

  • Wu, Yanqing; Jenkins, Keith A.; Valdes-Garcia, Alberto
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl300904k

Surface polar optical phonon interaction induced many-body effects and hot-electron relaxation in graphene
journal, March 2013


Inelastic carrier lifetime in a coupled graphene/electron-phonon system: Role of plasmon-phonon coupling
journal, December 2014


Infrared Nanoscopy of Dirac Plasmons at the Graphene–SiO 2 Interface
journal, October 2011

  • Fei, Zhe; Andreev, Gregory O.; Bao, Wenzhong
  • Nano Letters, Vol. 11, Issue 11
  • DOI: 10.1021/nl202362d

Dielectric function, screening, and plasmons in two-dimensional graphene
journal, May 2007


Electronic transport in two-dimensional graphene
journal, May 2011

  • Das Sarma, S.; Adam, Shaffique; Hwang, E. H.
  • Reviews of Modern Physics, Vol. 83, Issue 2, p. 407-470
  • DOI: 10.1103/RevModPhys.83.407

Surface polar phonon dominated electron transport in graphene
journal, December 2010

  • Li, X.; Barry, E. A.; Zavada, J. M.
  • Applied Physics Letters, Vol. 97, Issue 23
  • DOI: 10.1063/1.3525606

The Fano resonance in plasmonic nanostructures and metamaterials
journal, August 2010

  • Luk'yanchuk, Boris; Zheludev, Nikolay I.; Maier, Stefan A.
  • Nature Materials, Vol. 9, Issue 9
  • DOI: 10.1038/nmat2810

One-Dimensional Electrical Contact to a Two-Dimensional Material
journal, October 2013


Plasmon-phonon strongly coupled mode in epitaxial graphene
journal, February 2010


Chirality and Correlations in Graphene
journal, June 2007


Electronic properties of two-dimensional systems
journal, April 1982


Electron Scattering from Surface Excitations
journal, December 1972


Plasmon spectroscopy of free-standing graphene films
journal, June 2008


Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures
journal, June 2014

  • Brar, Victor W.; Jang, Min Seok; Sherrott, Michelle
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl501096s

Plasmons and the spectral function of graphene
journal, February 2008


One-way surface states due to nonreciprocal light-line crossing
journal, June 2015


The rise of graphene
journal, March 2007

  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

Inelastic scattering and current saturation in graphene
journal, May 2010


Non-Fermi-liquid behavior in neutral bilayer graphene
journal, October 2009


Electron screening and excitonic condensation in double-layer graphene systems
journal, December 2008


Ground State of Graphene in the Presence of Random Charged Impurities
journal, October 2008


Time-dependent transport in open systems based on quantum master equations
journal, June 2013


Electronic transport in graphene: A semiclassical approach including midgap states
journal, November 2007


Debye and non-Debye relaxation
journal, July 1985


Gate-tuning of graphene plasmons revealed by infrared nano-imaging
journal, June 2012


    Works referencing / citing this record:

    Density matrix superoperator for periodic quantum systems and its application to quantum cascade laser structures
    journal, September 2019

    • Demić, Aleksandar; Ikonić, Zoran; Kelsall, Robert W.
    • AIP Advances, Vol. 9, Issue 9
    • DOI: 10.1063/1.5095246

    Density matrix superoperator for periodic quantum systems and its application to quantum cascade laser structures
    journal, September 2019

    • Demić, Aleksandar; Ikonić, Zoran; Kelsall, Robert W.
    • AIP Advances, Vol. 9, Issue 9
    • DOI: 10.1063/1.5095246