DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Active Thermal Extraction and Temperature Sensing of Near-field Thermal Radiation

Abstract

Recently, we proposed an active thermal extraction (ATX) scheme that enables thermally populated surface phonon polaritons to escape into the far-field. The concept is based on a fluorescence upconversion process that also occurs in laser cooling of solids (LCS). Here, we present a generalized analysis of our scheme using the theoretical framework for LCS. We show that both LCS and ATX can be described with the same mathematical formalism by replacing the electron-phonon coupling parameter in LCS with the electron-photon coupling parameter in ATX. Using this framework, we compare the ideal efficiency and power extracted for the two schemes and examine the parasitic loss mechanisms. As a result, this work advances the application of ATX to manipulate near-field thermal radiation for applications such as temperature sensing and active radiative cooling.

Authors:
 [1];  [1];  [1]
  1. California Inst. of Technology (CalTech), Pasadena, CA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1388845
Grant/Contract Number:  
SC0001293
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal Issue: 1; Related Information: LMI partners with California Institute of Technology (lead); Harvard University; University of Illinois, Urbana-Champaign; Lawrence Berkeley National Laboratory; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; solar (photovoltaic); solid state lighting; phonons; thermal conductivity; electrodes - solar; materials and chemistry by design; optics; synthesis (novel materials); synthesis (self-assembly)

Citation Formats

Ding, D., Kim, T., and Minnich, A. J. Active Thermal Extraction and Temperature Sensing of Near-field Thermal Radiation. United States: N. p., 2016. Web. doi:10.1038/srep32744.
Ding, D., Kim, T., & Minnich, A. J. Active Thermal Extraction and Temperature Sensing of Near-field Thermal Radiation. United States. https://doi.org/10.1038/srep32744
Ding, D., Kim, T., and Minnich, A. J. Tue . "Active Thermal Extraction and Temperature Sensing of Near-field Thermal Radiation". United States. https://doi.org/10.1038/srep32744. https://www.osti.gov/servlets/purl/1388845.
@article{osti_1388845,
title = {Active Thermal Extraction and Temperature Sensing of Near-field Thermal Radiation},
author = {Ding, D. and Kim, T. and Minnich, A. J.},
abstractNote = {Recently, we proposed an active thermal extraction (ATX) scheme that enables thermally populated surface phonon polaritons to escape into the far-field. The concept is based on a fluorescence upconversion process that also occurs in laser cooling of solids (LCS). Here, we present a generalized analysis of our scheme using the theoretical framework for LCS. We show that both LCS and ATX can be described with the same mathematical formalism by replacing the electron-phonon coupling parameter in LCS with the electron-photon coupling parameter in ATX. Using this framework, we compare the ideal efficiency and power extracted for the two schemes and examine the parasitic loss mechanisms. As a result, this work advances the application of ATX to manipulate near-field thermal radiation for applications such as temperature sensing and active radiative cooling.},
doi = {10.1038/srep32744},
journal = {Scientific Reports},
number = 1,
volume = 6,
place = {United States},
year = {Tue Sep 06 00:00:00 EDT 2016},
month = {Tue Sep 06 00:00:00 EDT 2016}
}

Works referenced in this record:

Laser cooling of a solid by 65 K starting from room temperature
journal, January 1999


Laser cooling of Yb3+-doped BaY2F8 single crystal
journal, August 2006


Thermal radiation scanning tunnelling microscopy
journal, December 2006

  • De Wilde, Yannick; Formanek, Florian; Carminati, Rémi
  • Nature, Vol. 444, Issue 7120
  • DOI: 10.1038/nature05265

Anti-Stokes laser cooling in Yb^3+-doped KPb_2Cl_5 crystal
journal, January 2002

  • Mendioroz, A.; Fernández, J.; Voda, M.
  • Optics Letters, Vol. 27, Issue 17
  • DOI: 10.1364/ol.27.001525

Laser cooling of solids
text, January 2009


Front Matter: Volume 7228
conference, February 2009

  • Spie, Proceedings of
  • SPIE OPTO: Integrated Optoelectronic Devices, SPIE Proceedings
  • DOI: 10.1117/12.823973

Temperature Sensing Using Fluorescent Nanothermometers
journal, May 2010

  • Vetrone, Fiorenzo; Naccache, Rafik; Zamarrón, Alicia
  • ACS Nano, Vol. 4, Issue 6
  • DOI: 10.1021/nn100244a

Passive radiative cooling below ambient air temperature under direct sunlight
journal, November 2014

  • Raman, Aaswath P.; Anoma, Marc Abou; Zhu, Linxiao
  • Nature, Vol. 515, Issue 7528, p. 540-544
  • DOI: 10.1038/nature13883

Near-Field Radiative Cooling of Nanostructures
journal, January 2012

  • Guha, Biswajeet; Otey, Clayton; Poitras, Carl B.
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl301708e

Advances in Laser Cooling of Solids
journal, June 2006

  • Ruan, X. L.; Kaviany, M.
  • Journal of Heat Transfer, Vol. 129, Issue 1
  • DOI: 10.1115/1.2360596

Photon upconverting nanoparticles for luminescent sensing of temperature
journal, January 2012

  • Sedlmeier, Andreas; Achatz, Daniela E.; Fischer, Lorenz H.
  • Nanoscale, Vol. 4, Issue 22
  • DOI: 10.1039/c2nr32314a

Near-Field Radiative Cooling of Nanostructures
journal, January 2012

  • Guha, Biswajeet; Otey, Clayton; Poitras, Carl B.
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl301708e

Near-field radiative heat transfer between parallel structures in the deep subwavelength regime
journal, March 2016

  • St-Gelais, Raphael; Zhu, Linxiao; Fan, Shanhui
  • Nature Nanotechnology, Vol. 11, Issue 6
  • DOI: 10.1038/nnano.2016.20

Taking the Temperature of the Interiors of Magnetically Heated Nanoparticles
journal, April 2014


Spectroscopic and laser cooling results on Yb3+-doped BaY2F8 single crystal
journal, July 2006

  • Bigotta, Stefano; Parisi, Daniela; Bonelli, Lucia
  • Journal of Applied Physics, Vol. 100, Issue 1
  • DOI: 10.1063/1.2211633

Near-Field Energy Extraction with Hyperbolic Metamaterials
journal, January 2015

  • Shi, Jiawei; Liu, Baoan; Li, Pengfei
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl504332t

Multiphonon Orbit-Lattice Relaxation of Excited States of Rare-Earth Ions in Crystals
journal, October 1968


A nanophotonic solar thermophotovoltaic device
journal, January 2014

  • Lenert, Andrej; Bierman, David M.; Nam, Youngsuk
  • Nature Nanotechnology, Vol. 9, Issue 2, p. 126-130
  • DOI: 10.1038/nnano.2013.286

Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides
journal, March 2012


Radiative heat transfer in the extreme near field
journal, December 2015

  • Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor
  • Nature, Vol. 528, Issue 7582
  • DOI: 10.1038/nature16070

Enhancement of near-field radiative heat transfer using polar dielectric thin films
journal, February 2015

  • Song, Bai; Ganjeh, Yashar; Sadat, Seid
  • Nature Nanotechnology, Vol. 10, Issue 3
  • DOI: 10.1038/nnano.2015.6

Cooling to 208K by optical refrigeration
journal, April 2005

  • Thiede, J.; Distel, J.; Greenfield, S. R.
  • Applied Physics Letters, Vol. 86, Issue 15
  • DOI: 10.1063/1.1900951

Solar steam generation by heat localization
journal, July 2014

  • Ghasemi, Hadi; Ni, George; Marconnet, Amy Marie
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5449

Review of temperature measurement
journal, August 2000

  • Childs, P. R. N.; Greenwood, J. R.; Long, C. A.
  • Review of Scientific Instruments, Vol. 71, Issue 8
  • DOI: 10.1063/1.1305516

Surface Phonon Polaritons Mediated Energy Transfer between Nanoscale Gaps
journal, August 2009

  • Shen, Sheng; Narayanaswamy, Arvind; Chen, Gang
  • Nano Letters, Vol. 9, Issue 8
  • DOI: 10.1021/nl901208v

Anti-Stokes laser-induced internal cooling of Yb 3 + -doped glasses
journal, August 2000


Measurements of optical refrigeration in ytterbium-doped crystals
journal, November 2001

  • Epstein, R. I.; Brown, J. J.; Edwards, B. C.
  • Journal of Applied Physics, Vol. 90, Issue 9
  • DOI: 10.1063/1.1406544

Passive radiative cooling below ambient air temperature under direct sunlight
journal, November 2014

  • Raman, Aaswath P.; Anoma, Marc Abou; Zhu, Linxiao
  • Nature, Vol. 515, Issue 7528, p. 540-544
  • DOI: 10.1038/nature13883

Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer
journal, April 2015


Anti-Stokes luminescence cooling of Tm^3+doped BaY_2F_8
journal, January 2008

  • Patterson, Wendy; Bigotta, Stefano; Sheik-Bahae, Mansoor
  • Optics Express, Vol. 16, Issue 3
  • DOI: 10.1364/oe.16.001704

Radiative heating and cooling with spectrally selective surfaces
journal, January 1981


Thermal Infrared Near-Field Spectroscopy
journal, February 2012

  • Jones, Andrew C.; Raschke, Markus B.
  • Nano Letters, Vol. 12, Issue 3
  • DOI: 10.1021/nl204201g

Thermal Infrared Near-Field Spectroscopy
journal, February 2012

  • Jones, Andrew C.; Raschke, Markus B.
  • Nano Letters, Vol. 12, Issue 3
  • DOI: 10.1021/nl204201g

Laser Cooling of a Solid by 16 K Starting from Room Temperature
journal, February 1997


Scanning thermal imaging by near-field fluorescence spectroscopy
journal, February 2009


Scanning thermal imaging by near-field fluorescence spectroscopy
journal, February 2009


Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass
journal, October 2000


Zwei Bemerkungen �ber den Unterschied von Lumineszenz- und Temperaturstrahlung
journal, November 1929

  • Pringsheim, Peter
  • Zeitschrift f�r Physik, Vol. 57, Issue 11-12
  • DOI: 10.1007/BF01340652

Laser cooling of a semiconductor by 40 kelvin
journal, January 2013


Nanoparticles Heat through Light Localization
journal, June 2014

  • Hogan, Nathaniel J.; Urban, Alexander S.; Ayala-Orozco, Ciceron
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl5016975

Surface Phonon Polaritons Mediated Energy Transfer between Nanoscale Gaps
journal, August 2009

  • Shen, Sheng; Narayanaswamy, Arvind; Chen, Gang
  • Nano Letters, Vol. 9, Issue 8
  • DOI: 10.1021/nl901208v

Active thermal extraction of near-field thermal radiation
journal, February 2016


On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4 f –4 f transitions in rare‐earth ions
journal, May 1983

  • van Dijk, J. M. F.; Schuurmans, M. F. H.
  • The Journal of Chemical Physics, Vol. 78, Issue 9
  • DOI: 10.1063/1.445485

Optical refrigeration
journal, December 2007


Laser cooling of solids
journal, July 2010


Upconverting Nanoparticles for Nanoscale Thermometry
journal, April 2011

  • Fischer, Lorenz H.; Harms, Gregory S.; Wolfbeis, Otto S.
  • Angewandte Chemie International Edition, Vol. 50, Issue 20
  • DOI: 10.1002/anie.201006835

Laser cooling of organic–inorganic lead halide perovskites
journal, December 2015


Near-Field Energy Extraction with Hyperbolic Metamaterials
journal, January 2015

  • Shi, Jiawei; Liu, Baoan; Li, Pengfei
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl504332t

Radiative Cooling of Satellite-Borne Electronic Components
journal, April 1960


Radiative heat transfer in the extreme near field
journal, December 2015

  • Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor
  • Nature, Vol. 528, Issue 7582
  • DOI: 10.1038/nature16070

Laser cooling of solids
journal, February 2009


Laser cooling of a solid from ambient temperature
journal, January 2001


Taking the Temperature of the Interiors of Magnetically Heated Nanoparticles
journal, April 2014


Observation of laser-induced fluorescent cooling of a solid
journal, October 1995

  • Epstein, Richard I.; Buchwald, Melvin I.; Edwards, Bradley C.
  • Nature, Vol. 377, Issue 6549
  • DOI: 10.1038/377500a0

Laser cooling of a solid from ambient temperature
journal, January 2001


Laser cooling of solids [Laser Photon. Rev. 3, No. 1-2, 67-84 (2009)]
journal, May 2009


Radiative cooling of solar cells
journal, January 2014


Local Temperature Determination of Optically Excited Nanoparticles and Nanodots
journal, March 2011

  • Carlson, Michael T.; Khan, Aurangzeb; Richardson, Hugh H.
  • Nano Letters, Vol. 11, Issue 3
  • DOI: 10.1021/nl103938u

Optical temperature sensing of NaYbF_4: Tm^3+ @ SiO_2 core-shell micro-particles induced by infrared excitation
journal, January 2013


Laser cooling of a solid by 21??K starting from room temperature
journal, January 1998

  • Luo, X.; Eisaman, M. D.; Gosnell, T. R.
  • Optics Letters, Vol. 23, Issue 8
  • DOI: 10.1364/ol.23.000639

Radiative heat transfer at the nanoscale
journal, August 2009

  • Rousseau, Emmanuel; Siria, Alessandro; Jourdan, Guillaume
  • Nature Photonics, Vol. 3, Issue 9
  • DOI: 10.1038/nphoton.2009.144

Measurements of radiation balance on the satellite Explorer VII
journal, July 1963


Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides
journal, March 2012


Thermal radiation scanning tunnelling microscopy
journal, December 2006

  • De Wilde, Yannick; Formanek, Florian; Carminati, Rémi
  • Nature, Vol. 444, Issue 7120
  • DOI: 10.1038/nature05265

Laser cooling of solids to cryogenic temperatures
journal, January 2010

  • Seletskiy, Denis V.; Melgaard, Seth D.; Bigotta, Stefano
  • Nature Photonics, Vol. 4, Issue 3
  • DOI: 10.1038/nphoton.2009.269

Laser refrigeration of hydrothermal nanocrystals in physiological media
journal, November 2015

  • Roder, Paden B.; Smith, Bennett E.; Zhou, Xuezhe
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 49
  • DOI: 10.1073/pnas.1510418112

Infrared Thermography
reference-book, January 2002

  • Griffith, Brent; Turler, Daniel; Goudey, Howdy
  • Encyclopedia of Imaging Science and Technology
  • DOI: 10.1002/0471443395.img055

Works referencing / citing this record:

Transforming heat transfer with thermal metamaterials and devices
journal, March 2021