DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture

Abstract

Porous covalent polymers are attracting increasing interest in the fields of gas adsorption, gas separation, and catalysis due to their fertile synthetic polymer chemistry, large internal surface areas, and ultrahigh hydrothermal stabilities. While precisely manipulating the porosities of porous organic materials for targeted applications remains challenging, we show how a large degree of diversity can be achieved in covalent organic polymers by incorporating multiple functionalities into a single framework, as is done for crystalline porous materials. In this work, we synthesized 17 novel porous covalent organic polymers (COPs) with finely tuned porosities, a wide range of Brunauer–Emmett–Teller (BET) specific surface areas of 430–3624 m2 g–1, and a broad range of pore volumes of 0.24–3.50 cm3 g–1, all achieved by tailoring the length and geometry of building blocks. Furthermore, we are the first to successfully incorporate more than three distinct functional groups into one phase for porous organic materials, which has been previously demonstrated in crystalline metal–organic frameworks (MOFs). COPs decorated with multiple functional groups in one phase can lead to enhanced properties that are not simply linear combinations of the pure component properties. For instance, in the dibromobenzene-lined frameworks, the bi- and multifunctionalized COPs exhibit selectivities for carbon dioxide overmore » nitrogen twice as large as any of the singly functionalized COPs. These multifunctionalized frameworks also exhibit a lower parasitic energy cost for carbon capture at typical flue gas conditions than any of the singly functionalized frameworks. Despite the significant improvement, these frameworks do not yet outperform the current state-of-art technology for carbon capture. Nonetheless, the tuning strategy presented here opens up avenues for the design of novel catalysts, the synthesis of functional sensors from these materials, and the improvement in the performance of existing covalent organic polymers by multifunctionalization.« less

Authors:
 [1];  [2];  [2];  [1];  [3];  [1];  [1];  [4];  [5]
  1. Beijing Univ. of Chemical Technology, Beijing (People's Republic of China)
  2. Univ. of California, Berkeley, CA (United States)
  3. Univ. of Tennessee, Knoxville, TN (United States)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  5. Univ. of California, Berkeley, CA (United States); Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion (Switzerland)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations (CGS); Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National 863 Programs; National Natural Science Foundation of China (NSFC); Scientific Research Funding; Beijing University of Chemical Technology; Fundamental Research Funds for the Central Universities
OSTI Identifier:
1386970
Grant/Contract Number:  
SC0001015; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 137; Journal Issue: 41; Related Information: CGS partners with University of California, Berkeley; University of California, Davis; Lawrence Berkeley National Laboratory; University of Minnesota; National Energy Technology Laboratory; Texas A&M University; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; membrane, carbon capture; materials and chemistry by design; synthesis (novel materials); synthesis (self-assembly); synthesis (scalable processing); functionalization; porosity; functional groups; mathematical methods; materials

Citation Formats

Xiang, Zhonghua, Mercado, Rocio, Huck, Johanna M., Wang, Hui, Guo, Zhanhu, Wang, Wenchuan, Cao, Dapeng, Haranczyk, Maciej, and Smit, Berend. Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture. United States: N. p., 2015. Web. doi:10.1021/jacs.5b06266.
Xiang, Zhonghua, Mercado, Rocio, Huck, Johanna M., Wang, Hui, Guo, Zhanhu, Wang, Wenchuan, Cao, Dapeng, Haranczyk, Maciej, & Smit, Berend. Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture. United States. https://doi.org/10.1021/jacs.5b06266
Xiang, Zhonghua, Mercado, Rocio, Huck, Johanna M., Wang, Hui, Guo, Zhanhu, Wang, Wenchuan, Cao, Dapeng, Haranczyk, Maciej, and Smit, Berend. Sun . "Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture". United States. https://doi.org/10.1021/jacs.5b06266. https://www.osti.gov/servlets/purl/1386970.
@article{osti_1386970,
title = {Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture},
author = {Xiang, Zhonghua and Mercado, Rocio and Huck, Johanna M. and Wang, Hui and Guo, Zhanhu and Wang, Wenchuan and Cao, Dapeng and Haranczyk, Maciej and Smit, Berend},
abstractNote = {Porous covalent polymers are attracting increasing interest in the fields of gas adsorption, gas separation, and catalysis due to their fertile synthetic polymer chemistry, large internal surface areas, and ultrahigh hydrothermal stabilities. While precisely manipulating the porosities of porous organic materials for targeted applications remains challenging, we show how a large degree of diversity can be achieved in covalent organic polymers by incorporating multiple functionalities into a single framework, as is done for crystalline porous materials. In this work, we synthesized 17 novel porous covalent organic polymers (COPs) with finely tuned porosities, a wide range of Brunauer–Emmett–Teller (BET) specific surface areas of 430–3624 m2 g–1, and a broad range of pore volumes of 0.24–3.50 cm3 g–1, all achieved by tailoring the length and geometry of building blocks. Furthermore, we are the first to successfully incorporate more than three distinct functional groups into one phase for porous organic materials, which has been previously demonstrated in crystalline metal–organic frameworks (MOFs). COPs decorated with multiple functional groups in one phase can lead to enhanced properties that are not simply linear combinations of the pure component properties. For instance, in the dibromobenzene-lined frameworks, the bi- and multifunctionalized COPs exhibit selectivities for carbon dioxide over nitrogen twice as large as any of the singly functionalized COPs. These multifunctionalized frameworks also exhibit a lower parasitic energy cost for carbon capture at typical flue gas conditions than any of the singly functionalized frameworks. Despite the significant improvement, these frameworks do not yet outperform the current state-of-art technology for carbon capture. Nonetheless, the tuning strategy presented here opens up avenues for the design of novel catalysts, the synthesis of functional sensors from these materials, and the improvement in the performance of existing covalent organic polymers by multifunctionalization.},
doi = {10.1021/jacs.5b06266},
journal = {Journal of the American Chemical Society},
number = 41,
volume = 137,
place = {United States},
year = {Sun Sep 27 00:00:00 EDT 2015},
month = {Sun Sep 27 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 168 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Screening hypothetical COP-5 structures using atomistic simulations. a. Structure of COP-5 with diamond topology generated in silico. b. Scatterplot illustrating BET surface area versus pore volume for the COP-5 structures with different topologies generated in silico, along with the experimental result. c. Comparison of computed CO2 isotherms inmore » COP-5 with the qdl, qzd and cds topologies, with the experimental results at 298 K. d. Structure of COP-5 with qdl topology generated in silico.« less

Save / Share:

Works referenced in this record:

Introduction to Carbon Capture and Sequestration
book, June 2013

  • Smit, Berend; Reimer, Jeffrey A.; Oldenburg, Curtis M.
  • The Berkeley Lectures on Energy
  • DOI: 10.1142/p911

Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program
journal, January 2008

  • Figueroa, José D.; Fout, Timothy; Plasynski, Sean
  • International Journal of Greenhouse Gas Control, Vol. 2, Issue 1, p. 9-20
  • DOI: 10.1016/S1750-5836(07)00094-1

Evaluating different classes of porous materials for carbon capture
journal, January 2014

  • Huck, Johanna M.; Lin, Li-Chiang; Berger, Adam H.
  • Energy Environ. Sci., Vol. 7, Issue 12
  • DOI: 10.1039/C4EE02636E

Carbon Dioxide Capture: Prospects for New Materials
journal, July 2010

  • D'Alessandro, Deanna M.; Smit, Berend; Long, Jeffrey R.
  • Angewandte Chemie International Edition, Vol. 49, Issue 35, p. 6058-6082
  • DOI: 10.1002/anie.201000431

Porous covalent–organic materials: synthesis, clean energy application and design
journal, January 2013


Conjugated microporous polymers: design, synthesis and application
journal, January 2013

  • Xu, Yanhong; Jin, Shangbin; Xu, Hong
  • Chemical Society Reviews, Vol. 42, Issue 20
  • DOI: 10.1039/c3cs60160a

Nanoporous organic polymer networks
journal, April 2012


Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers
journal, January 2013

  • Patel, Hasmukh A.; Hyun Je, Sang; Park, Joonho
  • Nature Communications, Vol. 4, Article No. 1357
  • DOI: 10.1038/ncomms2359

Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area
journal, November 2009

  • Ben, Teng; Ren, Hao; Ma, Shengqian
  • Angewandte Chemie International Edition, Vol. 48, Issue 50, p. 9457-9460
  • DOI: 10.1002/anie.200904637

Highly Stable Porous Polymer Networks with Exceptionally High Gas-Uptake Capacities
journal, July 2011


Highly Efficient Electrocatalysts for Oxygen Reduction Based on 2D Covalent Organic Polymers Complexed with Non-precious Metals
journal, January 2014

  • Xiang, Zhonghua; Xue, Yuhua; Cao, Dapeng
  • Angewandte Chemie International Edition, Vol. 53, Issue 9
  • DOI: 10.1002/anie.201308896

Nitrogen-Doped Holey Graphitic Carbon from 2D Covalent Organic Polymers for Oxygen Reduction
journal, March 2014


Synthesis of copolymerized porous organic frameworks with high gas storage capabilities at both high and low pressures
journal, January 2014

  • Pei, Cuiying; Ben, Teng; Li, Yanqiang
  • Chemical Communications, Vol. 50, Issue 46
  • DOI: 10.1039/c4cc00302k

Sequence control in polymer synthesis
journal, January 2009

  • Badi, Nezha; Lutz, Jean-François
  • Chemical Society Reviews, Vol. 38, Issue 12
  • DOI: 10.1039/b806413j

Rapid and quantitative one-pot synthesis of sequence-controlled polymers by radical polymerization
journal, September 2013

  • Gody, Guillaume; Maschmeyer, Thomas; Zetterlund, Per B.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3505

Sequence-Controlled Polymers
journal, August 2013


Multiblock Polymers: Panacea or Pandora's Box?
journal, April 2012


The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?
journal, August 2012

  • Farha, Omar K.; Eryazici, Ibrahim; Jeong, Nak Cheon
  • Journal of the American Chemical Society, Vol. 134, Issue 36, p. 15016-15021
  • DOI: 10.1021/ja3055639

Covalent organic frameworks
journal, January 2012

  • Feng, Xiao; Ding, Xuesong; Jiang, Donglin
  • Chemical Society Reviews, Vol. 41, Issue 18
  • DOI: 10.1039/c2cs35157a

Synthetic Control of the Pore Dimension and Surface Area in Conjugated Microporous Polymer and Copolymer Networks
journal, June 2008

  • Jiang, Jia-Xing; Su, Fabing; Trewin, Abbie
  • Journal of the American Chemical Society, Vol. 130, Issue 24
  • DOI: 10.1021/ja8010176

Postsynthetic Lithium Modification of Covalent-Organic Polymers for Enhancing Hydrogen and Carbon Dioxide Storage
journal, February 2012

  • Xiang, Zhonghua; Cao, Dapeng; Wang, Wenchuan
  • The Journal of Physical Chemistry C, Vol. 116, Issue 9
  • DOI: 10.1021/jp300137e

Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation
journal, November 2010

  • Lu, Weigang; Yuan, Daqiang; Zhao, Dan
  • Chemistry of Materials, Vol. 22, Issue 21, p. 5964-5972
  • DOI: 10.1021/cm1021068

High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centred monomers
journal, January 2009

  • Stöckel, Ev; Wu, Xiaofeng; Trewin, Abbie
  • Chemical Communications, Vol. 0, Issue 2, p. 212-214
  • DOI: 10.1039/B815044C

Porous Organic Polymers: Distinction from Disorder?
journal, February 2010

  • Trewin, Abbie; Cooper, Andrew I.
  • Angewandte Chemie International Edition, Vol. 49, Issue 9
  • DOI: 10.1002/anie.200906827

Amorphous PAF-1: Guiding the Rational Design of Ultraporous Materials
journal, August 2014

  • Thomas, Jens M. H.; Trewin, Abbie
  • The Journal of Physical Chemistry C, Vol. 118, Issue 34
  • DOI: 10.1021/jp502336a

Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers: CO
journal, January 2013

  • Dawson, Robert; Cooper, Andrew I.; Adams, Dave J.
  • Polymer International, Vol. 62, Issue 3
  • DOI: 10.1002/pi.4407

Great Prospects for PAF-1 and its derivatives
journal, January 2015

  • Pei, Cuiying; Ben, Teng; Qiu, Shilun
  • Materials Horizons, Vol. 2, Issue 1
  • DOI: 10.1039/C4MH00163J

Modeling Methane Adsorption in Interpenetrating Porous Polymer Networks
journal, September 2013

  • Martin, Richard L.; Shahrak, Mahdi Niknam; Swisher, Joseph A.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 39
  • DOI: 10.1021/jp406918d

In silico Design of Porous Polymer Networks: High-Throughput Screening for Methane Storage Materials
journal, March 2014

  • Martin, Richard L.; Simon, Cory M.; Smit, Berend
  • Journal of the American Chemical Society, Vol. 136, Issue 13
  • DOI: 10.1021/ja4123939

The Reticular Chemistry Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets
journal, December 2008

  • O’Keeffe, Michael; Peskov, Maxim A.; Ramsden, Stuart J.
  • Accounts of Chemical Research, Vol. 41, Issue 12, p. 1782-1789
  • DOI: 10.1021/ar800124u

Programmed Pore Architectures in Modular Quaternary Metal–Organic Frameworks
journal, November 2013

  • Liu, Lujia; Konstas, Kristina; Hill, Matthew R.
  • Journal of the American Chemical Society, Vol. 135, Issue 47
  • DOI: 10.1021/ja4100244

Large-Pore Apertures in a Series of Metal-Organic Frameworks
journal, May 2012


Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage
journal, January 2002

  • Eddaoudi, Mohamed; Kim, Jaheon; Rosi, Nathaniel
  • Science, Vol. 295, Issue 5554, p. 469-472
  • DOI: 10.1126/science.1067208

Microporous Polymers as Potential Hydrogen Storage Materials
journal, May 2007

  • McKeown, Neil B.; Budd, Peter M.; Book, David
  • Macromolecular Rapid Communications, Vol. 28, Issue 9
  • DOI: 10.1002/marc.200700054

Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks
journal, February 2010


High H 2 Storage of Hexagonal Metal−Organic Frameworks from First-Principles-Based Grand Canonical Monte Carlo Simulations
journal, August 2008

  • Han, Sang Soo; Goddard, William A.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 35
  • DOI: 10.1021/jp800832b

Functional Group Modification of Metal–Organic Frameworks for CO 2 Capture
journal, May 2012

  • Xiang, Zhonghua; Leng, Sanhua; Cao, Dapeng
  • The Journal of Physical Chemistry C, Vol. 116, Issue 19
  • DOI: 10.1021/jp3018875

Carbon Dioxide Capture in Metal–Organic Frameworks
journal, September 2011

  • Sumida, Kenji; Rogow, David L.; Mason, Jarad A.
  • Chemical Reviews, Vol. 112, Issue 2, p. 724-781
  • DOI: 10.1021/cr2003272

Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications
journal, July 2009

  • Furukawa, Hiroyasu; Yaghi, Omar M.
  • Journal of the American Chemical Society, Vol. 131, Issue 25, p. 8875-8883
  • DOI: 10.1021/ja9015765

Microporous organic polymers for carbon dioxide capture
journal, January 2011

  • Dawson, Robert; Stöckel, Ev; Holst, James R.
  • Energy & Environmental Science, Vol. 4, Issue 10
  • DOI: 10.1039/c1ee01971f

Thermodynamics of mixed-gas adsorption
journal, January 1965


Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture
journal, October 2011

  • Bae, Youn-Sang; Snurr, Randall Q.
  • Angewandte Chemie International Edition, Vol. 50, Issue 49
  • DOI: 10.1002/anie.201101891

Dynamic Modeling to Minimize Energy Use for CO 2 Capture in Power Plants by Aqueous Monoethanolamine
journal, July 2009

  • Ziaii, Sepideh; Rochelle, Gary T.; Edgar, Thomas F.
  • Industrial & Engineering Chemistry Research, Vol. 48, Issue 13
  • DOI: 10.1021/ie801385q

In silico screening of carbon-capture materials
journal, May 2012

  • Lin, Li-Chiang; Berger, Adam H.; Martin, Richard L.
  • Nature Materials, Vol. 11, Issue 7
  • DOI: 10.1038/nmat3336

Works referencing / citing this record:

Poly(Ionic Liquid)-Derived Carbon with Site-Specific N-Doping and Biphasic Heterojunction for Enhanced CO 2 Capture and Sensing
journal, May 2017

  • Gong, Jiang; Antonietti, Markus; Yuan, Jiayin
  • Angewandte Chemie International Edition, Vol. 56, Issue 26
  • DOI: 10.1002/anie.201702453

HiGee Strategy toward Rapid Mass Production of Porous Covalent Organic Polymers with Superior Methane Deliverable Capacity
journal, January 2020

  • Zhang, Weichao; Liu, Yujia; Luo, Yong
  • Advanced Functional Materials, Vol. 30, Issue 11
  • DOI: 10.1002/adfm.201908079

A New Triazine-Based Covalent Organic Framework for High-Performance Capacitive Energy Storage
journal, February 2017


Retracted Article: Potential applications of functional porous organic polymer materials
journal, January 2017

  • Zhang, Weijie; Aguila, Briana; Ma, Shengqian
  • Journal of Materials Chemistry A, Vol. 5, Issue 19
  • DOI: 10.1039/c6ta11168h

A Pyrolysis-Free Covalent Organic Polymer for Oxygen Reduction
journal, August 2018

  • Guo, Jianing; Lin, Chun-Yu; Xia, Zhenhai
  • Angewandte Chemie International Edition, Vol. 57, Issue 38
  • DOI: 10.1002/anie.201808226

Iron‐Free Cathode Catalysts for Proton‐Exchange‐Membrane Fuel Cells: Cobalt Catalysts and the Peroxide Mitigation Approach
journal, December 2018

  • Wang, Xiao Xia; Prabhakaran, Venkateshkumar; He, Yanghua
  • Advanced Materials, Vol. 31, Issue 31
  • DOI: 10.1002/adma.201805126

Trace level detection of nitroanilines using a solution processable fluorescent porous organic polymer
journal, January 2016

  • Deshmukh, Arundhati; Bandyopadhyay, Sujoy; James, Anto
  • Journal of Materials Chemistry C, Vol. 4, Issue 20
  • DOI: 10.1039/c6tc00599c

Recent Progress in MOF-Derived, Heteroatom-Doped Porous Carbons as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells
journal, December 2017

  • Yang, Liu; Zeng, Xiaofei; Wang, Wenchuan
  • Advanced Functional Materials, Vol. 28, Issue 7
  • DOI: 10.1002/adfm.201704537

Experimental and Neural Network Modeling of Partial Uptake for a Carbon Dioxide/Methane/Water Ternary Mixture on 13X Zeolite
journal, April 2017

  • Abdul Kareem, Firas A.; Shariff, Azmi M.; Ullah, Sami
  • Energy Technology, Vol. 5, Issue 8
  • DOI: 10.1002/ente.201600688

Geometry variation in porous covalent triazine polymer (CTP) for CO 2 adsorption
journal, January 2018

  • Lee, Siew-Pei; Mellon, N.; Shariff, Azmi M.
  • New Journal of Chemistry, Vol. 42, Issue 18
  • DOI: 10.1039/c8nj00638e

Biowaste-derived 3D honeycomb-like N and S dual-doped hierarchically porous carbons for high-efficient CO 2 capture
journal, January 2019

  • Shi, Weiwei; Wang, Rongzhen; Liu, Huili
  • RSC Advances, Vol. 9, Issue 40
  • DOI: 10.1039/c9ra03659h

Layered microporous polymers by solvent knitting method
journal, March 2017


Amorphous N-rich organic polymer/carbon nanotube composites as effective anode material for advanced lithium ion batteries
journal, January 2020


New Eco-Friendly Phosphorus Organic Polymers as Gas Storage Media
journal, August 2017


Porous Organic Polymers for Post-Combustion Carbon Capture
journal, July 2017


Recent Progress in Nitrogen-Doped Metal-Free Electrocatalysts for Oxygen Reduction Reaction
journal, May 2018


Molecular Simulations of CO$_{2}$/N$_{2}$/H$_{2}$O Gaseous Mixture Separation in Graphtriyne Membrane
book, June 2019

  • Faginas-Lago, Noelia; Apriliyanto, Yusuf Bramastya; Lombardi, Andrea
  • Computational Science and Its Applications – ICCSA 2019: 19th International Conference, Saint Petersburg, Russia, July 1–4, 2019, Proceedings, Part VI, p. 374-387
  • DOI: 10.1007/978-3-030-24311-1_27

An unprecedented 2D covalent organic framework with an htb net topology
journal, January 2019

  • Cai, Song-Liang; He, Zi-Hao; Li, Xin-Le
  • Chemical Communications, Vol. 55, Issue 89
  • DOI: 10.1039/c9cc06780a

Two-dimensional graphitic C 3 N 5 materials: promising metal-free catalysts and CO 2 adsorbents
journal, January 2018

  • Huang, Ling; Liu, Zhiqiang; Chen, Wei
  • Journal of Materials Chemistry A, Vol. 6, Issue 16
  • DOI: 10.1039/c8ta01458b

Porous Polymers as Multifunctional Material Platforms toward Task-Specific Applications
journal, October 2018


Chiral covalent organic frameworks for asymmetric catalysis and chiral separation
journal, July 2017


Synthesis of anionic ionic liquids@TpBd-(SO 3 ) 2 for the selective adsorption of cationic dyes with superior capacity
journal, January 2020

  • Dang, Meng; Deng, Qi-Liang; Tian, Yan-Yan
  • RSC Advances, Vol. 10, Issue 9
  • DOI: 10.1039/c9ra10035k

Progress on the Photocatalytic Reduction Removal of Chromium Contamination
journal, November 2018


Observation of the wrapping mechanism in amine carbon dioxide molecular interactions on heterogeneous sorbents
journal, January 2016

  • Thirion, D.; Rozyyev, V.; Park, J.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 21
  • DOI: 10.1039/c6cp01382a

Porous organic polymers based on cobalt corroles for carbon monoxide binding
journal, January 2019

  • Brandès, Stéphane; Quesneau, Valentin; Fonquernie, Osian
  • Dalton Transactions, Vol. 48, Issue 31
  • DOI: 10.1039/c9dt01599j

Computational screening of covalent organic frameworks for the capture of radioactive iodine and methyl iodide
journal, January 2017

  • Lan, Youshi; Tong, Minman; Yang, Qingyuan
  • CrystEngComm, Vol. 19, Issue 33
  • DOI: 10.1039/c7ce00118e

Carbazole-functionalized hyper-cross-linked polymers for CO 2 uptake based on Friedel–Crafts polymerization on 9-phenylcarbazole
journal, January 2019

  • Fang, Dandan; Li, Xiaodong; Zou, Meishuai
  • Beilstein Journal of Organic Chemistry, Vol. 15
  • DOI: 10.3762/bjoc.15.279

Carbon dioxide capture in amorphous porous organic polymers
journal, January 2017

  • Wang, Wenjing; Zhou, Mi; Yuan, Daqiang
  • Journal of Materials Chemistry A, Vol. 5, Issue 4
  • DOI: 10.1039/c6ta09234a

Preparation of Ni-Doped Li2TiO3 Using an Inorganic Precipitation–Peptization Method
journal, October 2019


Fabrication of a hydrazone‐linked covalent organic framework‐bound capillary column for gas chromatography separation
journal, April 2019

  • Huang, Xiao‐Ling; Lan, Hai‐Hang; Yan, Yi‐Lun
  • SEPARATION SCIENCE PLUS, Vol. 2, Issue 4
  • DOI: 10.1002/sscp.201800146

A Pyrolysis‐Free Covalent Organic Polymer for Oxygen Reduction
journal, August 2018

  • Guo, Jianing; Lin, Chun‐Yu; Xia, Zhenhai
  • Angewandte Chemie, Vol. 130, Issue 38
  • DOI: 10.1002/ange.201808226

ZIF-Derived Nitrogen-Doped Porous Carbons for Xe Adsorption and Separation
journal, February 2016

  • Zhong, Shan; Wang, Qian; Cao, Dapeng
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep21295

Layered microporous polymers by solvent knitting method
journal, March 2017


New Eco-Friendly Phosphorus Organic Polymers as Gas Storage Media
journal, August 2017


Carbazole-functionalized hyper-cross-linked polymers for CO 2 uptake based on Friedel–Crafts polymerization on 9-phenylcarbazole
journal, January 2019

  • Fang, Dandan; Li, Xiaodong; Zou, Meishuai
  • Beilstein Journal of Organic Chemistry, Vol. 15
  • DOI: 10.3762/bjoc.15.279

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.