skip to main content

DOE PAGESDOE PAGES

Title: Understanding Hydraulic Fracturing: A Multi-Scale Problem

Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nano-meters to kilo-meters. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical, and experimental efforts. At the field scale, we use discrete fracture network modeling to simulate production at a well site whose fracture network is based on a site characterization of a shale formation. At the core scale, we use triaxial fracture experiments and a finite-element discrete-element fracture propagation model with a coupled fluid solver to study dynamic crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and real micromodels to study pore-scale flow phenomenon such as multiphase flow and mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs.
Authors:
ORCiD logo [1] ;  [1] ; ORCiD logo [1] ; ORCiD logo [1] ;  [1] ; ORCiD logo [1] ; ORCiD logo [1] ; ORCiD logo [1] ; ORCiD logo [1] ;  [1] ; ORCiD logo [1] ; ORCiD logo [1] ; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Report Number(s):
LA-UR-16-21087
Journal ID: ISSN 1364-503X
Grant/Contract Number:
AC52-06NA25396
Type:
Accepted Manuscript
Journal Name:
Philosophical Transactions of the Royal Society. A, Mathematical, Physical and Engineering Sciences
Additional Journal Information:
Journal Volume: 374; Journal Issue: 2078; Journal ID: ISSN 1364-503X
Publisher:
The Royal Society Publishing
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
03 NATURAL GAS; Earth Sciences; Energy Sciences; Mathematics; hydraulic fracturing, shale gas, subsurface flow and transport, discrete fracture network, triaxial core flood, finite-element discrete-element, lattice Boltzmann, microfluidics
OSTI Identifier:
1369170