DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrochemical Capture and Release of Carbon Dioxide

Abstract

Understanding the chemistry of carbon dioxide is key to affecting changes in atmospheric concentrations. One area of intense interest is CO2 capture in chemically reversible cycles relevant to carbon capture technologies. Most CO2 capture methods involve thermal cycles in which a nucleophilic agent captures CO2 from impure gas streams (e.g., flue gas), followed by a thermal process in which pure CO2 is released. Several reviews have detailed progress in these approaches. A less explored strategy uses electrochemical cycles to capture CO2 and release it in pure form. These cycles typically rely on electrochemical generation of nucleophiles that attack CO2 at the electrophilic carbon atom, forming a CO2 adduct. Then, CO2 is released in pure form via a subsequent electrochemical step. In this Perspective, we describe electrochemical cycles for CO2 capture and release, emphasizing electrogenerated nucleophiles. As a result, we also discuss some advantages and disadvantages inherent in this general approach.

Authors:
 [1];  [1];  [1]; ORCiD logo [1]
  1. School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
Publication Date:
Research Org.:
Arizona State Univ., Tempe, AZ (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1341908
Alternate Identifier(s):
OSTI ID: 1345211
Grant/Contract Number:  
AR0000343
Resource Type:
Published Article
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Name: ACS Energy Letters Journal Volume: 2 Journal Issue: 2; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Rheinhardt, Joseph H., Singh, Poonam, Tarakeshwar, Pilarisetty, and Buttry, Daniel A. Electrochemical Capture and Release of Carbon Dioxide. United States: N. p., 2017. Web. doi:10.1021/acsenergylett.6b00608.
Rheinhardt, Joseph H., Singh, Poonam, Tarakeshwar, Pilarisetty, & Buttry, Daniel A. Electrochemical Capture and Release of Carbon Dioxide. United States. https://doi.org/10.1021/acsenergylett.6b00608
Rheinhardt, Joseph H., Singh, Poonam, Tarakeshwar, Pilarisetty, and Buttry, Daniel A. Wed . "Electrochemical Capture and Release of Carbon Dioxide". United States. https://doi.org/10.1021/acsenergylett.6b00608.
@article{osti_1341908,
title = {Electrochemical Capture and Release of Carbon Dioxide},
author = {Rheinhardt, Joseph H. and Singh, Poonam and Tarakeshwar, Pilarisetty and Buttry, Daniel A.},
abstractNote = {Understanding the chemistry of carbon dioxide is key to affecting changes in atmospheric concentrations. One area of intense interest is CO2 capture in chemically reversible cycles relevant to carbon capture technologies. Most CO2 capture methods involve thermal cycles in which a nucleophilic agent captures CO2 from impure gas streams (e.g., flue gas), followed by a thermal process in which pure CO2 is released. Several reviews have detailed progress in these approaches. A less explored strategy uses electrochemical cycles to capture CO2 and release it in pure form. These cycles typically rely on electrochemical generation of nucleophiles that attack CO2 at the electrophilic carbon atom, forming a CO2 adduct. Then, CO2 is released in pure form via a subsequent electrochemical step. In this Perspective, we describe electrochemical cycles for CO2 capture and release, emphasizing electrogenerated nucleophiles. As a result, we also discuss some advantages and disadvantages inherent in this general approach.},
doi = {10.1021/acsenergylett.6b00608},
journal = {ACS Energy Letters},
number = 2,
volume = 2,
place = {United States},
year = {Wed Feb 01 00:00:00 EST 2017},
month = {Wed Feb 01 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acsenergylett.6b00608

Citation Metrics:
Cited by: 87 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reversible Electrochemical Trapping of Carbon Dioxide Using 4,4′-Bipyridine That Does Not Require Thermal Activation
journal, December 2015

  • Ranjan, Rajeev; Olson, Jarred; Singh, Poonam
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 24
  • DOI: 10.1021/acs.jpclett.5b02220

Carboxylation of Phenols with CO 2 at Atmospheric Pressure
journal, March 2016

  • Luo, Junfei; Preciado, Sara; Xie, Pan
  • Chemistry - A European Journal, Vol. 22, Issue 20
  • DOI: 10.1002/chem.201601114

Concentration of Carbon Dioxide by Electrochemically Modulated Complexation with a Binuclear Copper Complex
journal, May 2005

  • Appel, Aaron M.; Newell, Rachel; DuBois, Daniel L.
  • Inorganic Chemistry, Vol. 44, Issue 9, p. 3046-3056
  • DOI: 10.1021/ic050023k

CO2 desorption using high-pressure bipolar membrane electrodialysis
journal, January 2011

  • Eisaman, Matthew D.; Alvarado, Luis; Larner, Daniel
  • Energy & Environmental Science, Vol. 4, Issue 10
  • DOI: 10.1039/c1ee01336j

CO2 extraction from seawater using bipolar membrane electrodialysis
journal, January 2012

  • Eisaman, Matthew D.; Parajuly, Keshav; Tuganov, Alexander
  • Energy & Environmental Science, Vol. 5, Issue 6
  • DOI: 10.1039/c2ee03393c

Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage
journal, February 2011


Direct Electrochemical Capture and Release of Carbon Dioxide Using an Industrial Organic Pigment: Quinacridone
journal, May 2014

  • Apaydin, Dogukan Hazar; Głowacki, Eric Daniel; Portenkirchner, Engelbert
  • Angewandte Chemie International Edition, Vol. 53, Issue 26
  • DOI: 10.1002/anie.201403618

Emerging CO2 capture systems
journal, September 2015


Carbonates, Thiocarbonates, and the Corresponding Monoalkyl Derivatives: III. The 13C Chemical Shift Tensors in Potassium Carbonate, Bicarbonate and Related Monomethyl Derivatives
journal, August 2002

  • Stueber, Dirk; Orendt, Anita M.; Facelli, Julio C.
  • Solid State Nuclear Magnetic Resonance, Vol. 22, Issue 1
  • DOI: 10.1006/snmr.2002.0061

Carbonates, Thiocarbonates, and the Corresponding Monoalkyl Derivatives. 1. Their Preparation and Isotropic 13 C NMR Chemical Shifts
journal, April 2001

  • Stueber, Dirk; Patterson, Dale; Mayne, Charles L.
  • Inorganic Chemistry, Vol. 40, Issue 8
  • DOI: 10.1021/ic0012266

Evidence for Large Inner Reorganization Energies in the Reduction of Diaryl Disulfides:  Toward a Mechanistic Link between Concerted and Stepwise Dissociative Electron Transfers?
journal, March 1999

  • Daasbjerg, Kim; Jensen, Henrik; Benassi, Rois
  • Journal of the American Chemical Society, Vol. 121, Issue 8
  • DOI: 10.1021/ja983374p

CO 2 separation using bipolar membrane electrodialysis
journal, January 2011

  • Eisaman, Matthew D.; Alvarado, Luis; Larner, Daniel
  • Energy Environ. Sci., Vol. 4, Issue 4
  • DOI: 10.1039/C0EE00303D

Designed amyloid fibers as materials for selective carbon dioxide capture
journal, December 2013

  • Li, D.; Furukawa, H.; Deng, H.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 1
  • DOI: 10.1073/pnas.1321797111

Electroreduction of oxygen on glassy carbon electrodes modified with in situ generated anthraquinone diazonium cations
journal, February 2009


Do general nucleophilicity scales exist?: NUCLEOPHILICITY SCALES
journal, May 2008

  • Mayr, Herbert; Ofial, Armin R.
  • Journal of Physical Organic Chemistry, Vol. 21, Issue 7-8
  • DOI: 10.1002/poc.1325

Easily Regenerable Solid Adsorbents Based on Polyamines for Carbon Dioxide Capture from the Air
journal, March 2014


Carbon dioxide separation from high temperature fuel cell power plants
journal, October 2002


Post-combustion carbon dioxide capture using electrochemically mediated amine regeneration
journal, January 2013

  • Stern, Michael C.; Simeon, Fritz; Herzog, Howard
  • Energy & Environmental Science, Vol. 6, Issue 8, p. 2505-2517
  • DOI: 10.1039/c3ee41165f

CO2 capture from combined cycles integrated with Molten Carbonate Fuel Cells
journal, May 2010

  • Campanari, Stefano; Chiesa, Paolo; Manzolini, Giampaolo
  • International Journal of Greenhouse Gas Control, Vol. 4, Issue 3
  • DOI: 10.1016/j.ijggc.2009.11.007

Removal of Carbon Dioxide from Breathing Gas Mixtures Using an Electrochemical Membrane Cell
journal, March 1993


Nucleophilic oxygenation of carbon dioxide by superoxide ion in aprotic media to form the peroxydicarbonate(2-) ion species
journal, August 1984

  • Roberts, Julian L.; Calderwood, Thomas S.; Sawyer, Donald T.
  • Journal of the American Chemical Society, Vol. 106, Issue 17
  • DOI: 10.1021/ja00329a003

Reductive Addition of  CO 2 to 9,10‐Phenanthrenequinone
journal, April 1989

  • Mizen, Mark B.; Wrighton, Mark S.
  • Journal of The Electrochemical Society, Vol. 136, Issue 4
  • DOI: 10.1149/1.2096891

Breaking Bonds with Electrons and Protons. Models and Examples
journal, August 2013

  • Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel
  • Accounts of Chemical Research, Vol. 47, Issue 1
  • DOI: 10.1021/ar4001444

Elements of Molecular and Biomolecular Electrochemistry
book, January 2006


Bench-scale demonstration of CO2 capture with electrochemically-mediated amine regeneration
journal, January 2014

  • Stern, Michael C.; Hatton, T. Alan
  • RSC Advances, Vol. 4, Issue 12
  • DOI: 10.1039/c3ra46774k

Electrochemical Concentration and Separation of Carbon Dioxide For Advanced Life Support Systems—Carbonation Cell System
conference, October 1969

  • Huebscher, R. G.; Babinsky, A. D.
  • Aeronautic and Space Engineering and Manufacturing Meeting, SAE Technical Paper Series
  • DOI: 10.4271/690640

Concentration of carbon dioxide by a high-temperature electrochemical membrane cell
journal, May 1985

  • Kang, M. P.; Winnick, J.
  • Journal of Applied Electrochemistry, Vol. 15, Issue 3
  • DOI: 10.1007/BF00615996

Carbonates, Thiocarbonates, and the Corresponding Monoalkyl Derivatives. 2. X-ray Crystal Structure of Potassium Methyltrithiocarbonate (KS 2 CSCH 3 )
journal, April 2001

  • Stueber, Dirk; Arif, Atta M.; Grant, David M.
  • Inorganic Chemistry, Vol. 40, Issue 8
  • DOI: 10.1021/ic001227y

Interaction between CO 2 and Electrochemically Reduced Species of N-propyl-4,4′-bipyridinium Cation
journal, May 1994

  • Ishida, Hitoshi; Ohba, Tomoyuki; Yamaguchi, Tomohiro
  • Chemistry Letters, Vol. 23, Issue 5
  • DOI: 10.1246/cl.1994.905

Carbon capture and storage update
journal, January 2014

  • Boot-Handford, Matthew E.; Abanades, Juan C.; Anthony, Edward J.
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42350F

Flow Batteries: Current Status and Trends
journal, September 2015

  • Soloveichik, Grigorii L.
  • Chemical Reviews, Vol. 115, Issue 20
  • DOI: 10.1021/cr500720t

Electrochemical CO 2 Capture Using Resin-Wafer Electrodeionization
journal, October 2013

  • Datta, Saurav; Henry, Michael P.; Lin, YuPo. J.
  • Industrial & Engineering Chemistry Research, Vol. 52, Issue 43
  • DOI: 10.1021/ie402538d

Molten carbonate fuel cell: Towards negative emissions in wastewater treatment CHP plants
journal, November 2013

  • Chacartegui, Ricardo; Monje, Benjamín; Sánchez, David
  • International Journal of Greenhouse Gas Control, Vol. 19
  • DOI: 10.1016/j.ijggc.2013.10.007

A Mechanistic Study of the Influence of Proton Transfer Processes on the Behavior of Thiol/Disulfide Redox Couples
journal, March 1999

  • Shouji, Eiichi; Buttry, Daniel A.
  • The Journal of Physical Chemistry B, Vol. 103, Issue 12
  • DOI: 10.1021/jp984591f

Electrochemical Separation and Concentration of <1% Carbon Dioxide from Nitrogen
journal, January 2003

  • Scovazzo, Paul; Poshusta, Joe; DuBois, Dan
  • Journal of The Electrochemical Society, Vol. 150, Issue 5, p. D91-D98
  • DOI: 10.1149/1.1566962

Redox-Mediated Separation of Carbon Dioxide from Flue Gas
journal, October 2015


Quinone Reduction in Ionic Liquids for Electrochemical CO 2 Separation
journal, June 2015


Electrochemical Capture and Release of Carbon Dioxide Using a Disulfide–Thiocarbonate Redox Cycle
journal, January 2017

  • Singh, Poonam; Rheinhardt, Joseph H.; Olson, Jarred Z.
  • Journal of the American Chemical Society, Vol. 139, Issue 3
  • DOI: 10.1021/jacs.6b10806