DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: NixWO2.72 nanorods as an efficient electrocatalyst for oxygen evolution reaction

Abstract

NixWO2.72 nanorods (NRs) are synthesized by a one-pot reaction of Ni(acac)2 and WCl4. In the rod structure, Ni(II) intercalates in the defective perovskite-type WO2.72 and is stabilized. The NixWO2.72 NRs show the x-dependent electrocatalysis for the oxygen evolution reaction (OER) in 0.1M KOH with Ni0.78WO2.72 being the most efficient, even outperforming the commercial Ir-catalyst. Lastly, the synthesis is not limited to NixWO2.72 but can be extended to MxWO2.72 (M = Co, Fe) as well, providing a new class of oxide-based catalysts for efficient OER and other energy conversion reactions.

Authors:
 [1];  [1];  [2];  [3];  [4];  [1];  [1];  [1]
  1. Brown Univ., Providence, RI (United States). Dept. of Chemistry
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)
  4. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); US Army Research Office (ARO)
OSTI Identifier:
1344225
Report Number(s):
BNL-113496-2017-JA
Journal ID: ISSN 2468-0257; R&D Project: 16060; 16060
Grant/Contract Number:  
SC0012704; W911NF-15-1-0147
Resource Type:
Accepted Manuscript
Journal Name:
Green Energy & Environment
Additional Journal Information:
Journal Volume: 2; Journal Issue: 2; Journal ID: ISSN 2468-0257
Publisher:
Elsevier - Institute of Process Engineering, Chinese Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
29 ENERGY PLANNING, POLICY, AND ECONOMY; Tungsten oxide; 3d transition metal doping; nanorods; oxygen evolution reaction; electrocatalysis; Center for Functional Nanomaterials

Citation Formats

Xi, Zheng, Mendoza-Garcia, Adriana, Zhu, Huiyuan, Chi, MiaoFang, Su, Dong, Erdosy, Daniel P., Li, Junrui, and Sun, Shouheng. NixWO2.72 nanorods as an efficient electrocatalyst for oxygen evolution reaction. United States: N. p., 2017. Web. doi:10.1016/j.gee.2017.01.001.
Xi, Zheng, Mendoza-Garcia, Adriana, Zhu, Huiyuan, Chi, MiaoFang, Su, Dong, Erdosy, Daniel P., Li, Junrui, & Sun, Shouheng. NixWO2.72 nanorods as an efficient electrocatalyst for oxygen evolution reaction. United States. https://doi.org/10.1016/j.gee.2017.01.001
Xi, Zheng, Mendoza-Garcia, Adriana, Zhu, Huiyuan, Chi, MiaoFang, Su, Dong, Erdosy, Daniel P., Li, Junrui, and Sun, Shouheng. Fri . "NixWO2.72 nanorods as an efficient electrocatalyst for oxygen evolution reaction". United States. https://doi.org/10.1016/j.gee.2017.01.001. https://www.osti.gov/servlets/purl/1344225.
@article{osti_1344225,
title = {NixWO2.72 nanorods as an efficient electrocatalyst for oxygen evolution reaction},
author = {Xi, Zheng and Mendoza-Garcia, Adriana and Zhu, Huiyuan and Chi, MiaoFang and Su, Dong and Erdosy, Daniel P. and Li, Junrui and Sun, Shouheng},
abstractNote = {NixWO2.72 nanorods (NRs) are synthesized by a one-pot reaction of Ni(acac)2 and WCl4. In the rod structure, Ni(II) intercalates in the defective perovskite-type WO2.72 and is stabilized. The NixWO2.72 NRs show the x-dependent electrocatalysis for the oxygen evolution reaction (OER) in 0.1M KOH with Ni0.78WO2.72 being the most efficient, even outperforming the commercial Ir-catalyst. Lastly, the synthesis is not limited to NixWO2.72 but can be extended to MxWO2.72 (M = Co, Fe) as well, providing a new class of oxide-based catalysts for efficient OER and other energy conversion reactions.},
doi = {10.1016/j.gee.2017.01.001},
journal = {Green Energy & Environment},
number = 2,
volume = 2,
place = {United States},
year = {Fri Jan 13 00:00:00 EST 2017},
month = {Fri Jan 13 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution
journal, January 2014

  • Morales-Guio, Carlos G.; Stern, Lucas-Alexandre; Hu, Xile
  • Chemical Society Reviews, Vol. 43, Issue 18
  • DOI: 10.1039/C3CS60468C

Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces
journal, December 2011


Mechanism and Tafel Lines of Electro-Oxidation of Water to Oxygen on RuO 2 (110)
journal, December 2010

  • Fang, Ya-Hui; Liu, Zhi-Pan
  • Journal of the American Chemical Society, Vol. 132, Issue 51
  • DOI: 10.1021/ja1069272

Stable Cobalt Nanoparticles and Their Monolayer Array as an Efficient Electrocatalyst for Oxygen Evolution Reaction
journal, June 2015

  • Wu, Liheng; Li, Qing; Wu, Cheng Hao
  • Journal of the American Chemical Society, Vol. 137, Issue 22
  • DOI: 10.1021/jacs.5b04142

Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis
journal, March 2013

  • Smith, Rodney D. L.; Prévot, Mathieu S.; Fagan, Randal D.
  • Science, Vol. 340, Issue 6128
  • DOI: 10.1126/science.1233638

Nature of Activated Manganese Oxide for Oxygen Evolution
journal, November 2015

  • Huynh, Michael; Shi, Chenyang; Billinge, Simon J. L.
  • Journal of the American Chemical Society, Vol. 137, Issue 47
  • DOI: 10.1021/jacs.5b06382

Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst
journal, February 2014

  • Zhang, Miao; de Respinis, Moreno; Frei, Heinz
  • Nature Chemistry, Vol. 6, Issue 4
  • DOI: 10.1038/nchem.1874

An Investigation of Thin-Film Ni–Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen
journal, August 2013

  • Louie, Mary W.; Bell, Alexis T.
  • Journal of the American Chemical Society, Vol. 135, Issue 33
  • DOI: 10.1021/ja405351s

Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation
journal, April 2014

  • Trotochaud, Lena; Young, Samantha L.; Ranney, James K.
  • Journal of the American Chemical Society, Vol. 136, Issue 18
  • DOI: 10.1021/ja502379c

Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting
journal, January 2015

  • Friebel, Daniel; Louie, Mary W.; Bajdich, Michal
  • Journal of the American Chemical Society, Vol. 137, Issue 3
  • DOI: 10.1021/ja511559d

Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni–Fe Oxide Water Splitting Electrocatalysts
journal, April 2016

  • Görlin, Mikaela; Chernev, Petko; Ferreira de Araújo, Jorge
  • Journal of the American Chemical Society, Vol. 138, Issue 17
  • DOI: 10.1021/jacs.6b00332

A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles
journal, October 2011


Optimizing Perovskites for the Water-Splitting Reaction
journal, December 2011


Controlled Anisotropic Growth of Co-Fe-P from Co-Fe-O Nanoparticles
journal, June 2015

  • Mendoza-Garcia, Adriana; Zhu, Huiyuan; Yu, Yongsheng
  • Angewandte Chemie International Edition, Vol. 54, Issue 33
  • DOI: 10.1002/anie.201503386

Efficient Water Oxidation Using CoMnP Nanoparticles
journal, March 2016

  • Li, Da; Baydoun, Habib; Verani, Cláudio N.
  • Journal of the American Chemical Society, Vol. 138, Issue 12
  • DOI: 10.1021/jacs.6b01543

Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts
journal, May 2012

  • Subbaraman, Ram; Tripkovic, Dusan; Chang, Kee-Chul
  • Nature Materials, Vol. 11, Issue 6
  • DOI: 10.1038/nmat3313

Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst
journal, May 2014

  • Gao, Minrui; Sheng, Wenchao; Zhuang, Zhongbin
  • Journal of the American Chemical Society, Vol. 136, Issue 19
  • DOI: 10.1021/ja502128j

Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks
journal, May 2006

  • Ponzoni, Andrea; Comini, Elisabetta; Sberveglieri, Giorgio
  • Applied Physics Letters, Vol. 88, Issue 20
  • DOI: 10.1063/1.2203932

Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2
journal, March 2009

  • Yaacob, M. H.; Breedon, M.; Kalantar-zadeh, K.
  • Sensors and Actuators B: Chemical, Vol. 137, Issue 1
  • DOI: 10.1016/j.snb.2008.12.035

Capacitive humidity-sensing properties of electron-beam-evaporated nanophased WO3 film on silicon nanoporous pillar array
journal, February 2009

  • Dong, Yong Fen; Li, Long Yu; Jiang, Wei Fen
  • Physica E: Low-dimensional Systems and Nanostructures, Vol. 41, Issue 4
  • DOI: 10.1016/j.physe.2008.11.014

Single-Crystalline Tungsten Oxide Quantum Dots for Fast Pseudocapacitor and Electrochromic Applications
journal, April 2014


Pristine Simple Oxides as Visible Light Driven Photocatalysts: Highly Efficient Decomposition of Organic Compounds over Platinum-Loaded Tungsten Oxide
journal, June 2008

  • Abe, Ryu; Takami, Hitoshi; Murakami, Naoya
  • Journal of the American Chemical Society, Vol. 130, Issue 25
  • DOI: 10.1021/ja800835q

W 5 O 14 Nanowires
journal, July 2007

  • Remškar, M.; Kovac, J.; Viršek, M.
  • Advanced Functional Materials, Vol. 17, Issue 12
  • DOI: 10.1002/adfm.200601150

Tunable Localized Surface Plasmon Resonances in Tungsten Oxide Nanocrystals
journal, February 2012

  • Manthiram, Karthish; Alivisatos, A. Paul
  • Journal of the American Chemical Society, Vol. 134, Issue 9
  • DOI: 10.1021/ja211363w

Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies
journal, July 2015

  • Cong, Shan; Yuan, Yinyin; Chen, Zhigang
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8800

Metallic WO 2 –Carbon Mesoporous Nanowires as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction
journal, May 2015

  • Wu, Rui; Zhang, Jingfang; Shi, Yanmei
  • Journal of the American Chemical Society, Vol. 137, Issue 22
  • DOI: 10.1021/jacs.5b01330

Homogeneously dispersed multimetal oxygen-evolving catalysts
journal, March 2016


An Inorganic Route for Controlled Synthesis of W 18 O 49 Nanorods and Nanofibers in Solution
journal, October 2003

  • Lou, Xiong Wen; Zeng, Hua Chun
  • Inorganic Chemistry, Vol. 42, Issue 20
  • DOI: 10.1021/ic034771q

Ultrathin W18O49 Nanowires with Diameters below 1 nm: Synthesis, Near-Infrared Absorption, Photoluminescence, and Photochemical Reduction of Carbon Dioxide
journal, January 2012

  • Xi, Guangcheng; Ouyang, Shuxin; Li, Peng
  • Angewandte Chemie International Edition, Vol. 51, Issue 10
  • DOI: 10.1002/anie.201107681

The near infrared absorption properties of W18O49
journal, January 2012

  • Guo, Chongshen; Yin, Shu; Dong, Qiang
  • RSC Advances, Vol. 2, Issue 12
  • DOI: 10.1039/c2ra01366e

The glucose-assisted synthesis of a graphene nanosheet–NiO composite for high-performance supercapacitors
journal, January 2014

  • Zhou, Meiling; Chai, Hui; Jia, Dianzeng
  • New Journal of Chemistry, Vol. 38, Issue 6
  • DOI: 10.1039/c3nj01351k

Strongly Coupled Pd Nanotetrahedron/Tungsten Oxide Nanosheet Hybrids with Enhanced Catalytic Activity and Stability as Oxygen Reduction Electrocatalysts
journal, August 2014

  • Lu, Yizhong; Jiang, Yuanyuan; Gao, Xiaohui
  • Journal of the American Chemical Society, Vol. 136, Issue 33
  • DOI: 10.1021/ja5041094

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

Structure–Activity Correlations in a Nickel–Borate Oxygen Evolution Catalyst
journal, April 2012

  • Bediako, D. Kwabena; Lassalle-Kaiser, Benedikt; Surendranath, Yogesh
  • Journal of the American Chemical Society, Vol. 134, Issue 15
  • DOI: 10.1021/ja301018q

Works referencing / citing this record:

Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution
journal, January 2018

  • Du, Huitong; Kong, Rong-Mei; Guo, Xiaoxi
  • Nanoscale, Vol. 10, Issue 46
  • DOI: 10.1039/c8nr07891b

Nonstoichiometric tungsten oxide: structure, synthesis, and applications
journal, November 2019

  • Zhang, Lu; Wang, Hao; Liu, Jingbing
  • Journal of Materials Science: Materials in Electronics, Vol. 31, Issue 2
  • DOI: 10.1007/s10854-019-02596-z