DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ligand-Enhanced Optical Response of Gold Nanomolecules and Its Fragment Projection Analysis: The Case of Au 30 (SR) 18

Abstract

We investigate via first-principles simulations the optical absorption spectra of three different Au30(SR)18 monolayer-protected clusters (MPC): Au30(StBu)18, Au30(SPh)18, and Au30(SPh-pNO2)18. Au30(StBu)18 is known in the literature, and its crystal structure is available. In contrast, Au30(SPh)18 and Au30(SPh-pNO2)18 are two species that have been designed by replacing the tert-butyl organic residues of Au30(StBu)18 with aromatic ones so as to investigate the effects of ligand replacement on the optical response of Au nanomolecules. By analogy to a previously studied Au23(SR)16– anionic species, despite distinct differences in charge and chemical composition, a substantial ligand enhancement of the absorption intensity in the optical region is also obtained for the Au30(SPh-pNO2)18 MPC. Furthermore, the use of conjugated aromatic ligands with properly chosen electron-withdrawing substituents and exhibiting steric hindrance so as to also achieve charge decompression at the surface is therefore demonstrated as a general approach to enhancing the MPC photoabsorption intensity in the optical region. In addition, we here subject the ligand-enhancement phenomenon to a detailed analysis based on the fragment projection of electronic excited states and on induced transition densities, leading to a better understanding of the physical origin of this phenomenon, thus opening avenues to its more precise control and exploitation.

Authors:
 [1];  [1];  [2];  [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [2]; ORCiD logo [1]
  1. Consiglio Nazionale delle Ricerche (CNR), Pisa (Italy)
  2. Univ. of Trieste (Italy). Dept. of Chemical Science and Pharmacy
  3. Univ. of Mississippi, Oxford, MS (United States). Dept. of Chemistry and Biochemistry
  4. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab.
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1343948
Report Number(s):
PNNL-SA-123164
Journal ID: ISSN 1932-7447
Grant/Contract Number:  
AC0576RL01830; CHE-1255519; 53999-ND5
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 8; Journal Issue: 2; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Sementa, Luca, Barcaro, Giovanni, Baseggio, Oscar, De Vetta, Martina, Dass, Amala, Aprà, Edoardo, Stener, Mauro, and Fortunelli, Alessandro. Ligand-Enhanced Optical Response of Gold Nanomolecules and Its Fragment Projection Analysis: The Case of Au 30 (SR) 18. United States: N. p., 2017. Web. doi:10.1021/acs.jpcc.6b12029.
Sementa, Luca, Barcaro, Giovanni, Baseggio, Oscar, De Vetta, Martina, Dass, Amala, Aprà, Edoardo, Stener, Mauro, & Fortunelli, Alessandro. Ligand-Enhanced Optical Response of Gold Nanomolecules and Its Fragment Projection Analysis: The Case of Au 30 (SR) 18. United States. https://doi.org/10.1021/acs.jpcc.6b12029
Sementa, Luca, Barcaro, Giovanni, Baseggio, Oscar, De Vetta, Martina, Dass, Amala, Aprà, Edoardo, Stener, Mauro, and Fortunelli, Alessandro. Tue . "Ligand-Enhanced Optical Response of Gold Nanomolecules and Its Fragment Projection Analysis: The Case of Au 30 (SR) 18". United States. https://doi.org/10.1021/acs.jpcc.6b12029. https://www.osti.gov/servlets/purl/1343948.
@article{osti_1343948,
title = {Ligand-Enhanced Optical Response of Gold Nanomolecules and Its Fragment Projection Analysis: The Case of Au 30 (SR) 18},
author = {Sementa, Luca and Barcaro, Giovanni and Baseggio, Oscar and De Vetta, Martina and Dass, Amala and Aprà, Edoardo and Stener, Mauro and Fortunelli, Alessandro},
abstractNote = {We investigate via first-principles simulations the optical absorption spectra of three different Au30(SR)18 monolayer-protected clusters (MPC): Au30(StBu)18, Au30(SPh)18, and Au30(SPh-pNO2)18. Au30(StBu)18 is known in the literature, and its crystal structure is available. In contrast, Au30(SPh)18 and Au30(SPh-pNO2)18 are two species that have been designed by replacing the tert-butyl organic residues of Au30(StBu)18 with aromatic ones so as to investigate the effects of ligand replacement on the optical response of Au nanomolecules. By analogy to a previously studied Au23(SR)16– anionic species, despite distinct differences in charge and chemical composition, a substantial ligand enhancement of the absorption intensity in the optical region is also obtained for the Au30(SPh-pNO2)18 MPC. Furthermore, the use of conjugated aromatic ligands with properly chosen electron-withdrawing substituents and exhibiting steric hindrance so as to also achieve charge decompression at the surface is therefore demonstrated as a general approach to enhancing the MPC photoabsorption intensity in the optical region. In addition, we here subject the ligand-enhancement phenomenon to a detailed analysis based on the fragment projection of electronic excited states and on induced transition densities, leading to a better understanding of the physical origin of this phenomenon, thus opening avenues to its more precise control and exploitation.},
doi = {10.1021/acs.jpcc.6b12029},
journal = {Journal of Physical Chemistry. C},
number = 2,
volume = 8,
place = {United States},
year = {Tue Jan 24 00:00:00 EST 2017},
month = {Tue Jan 24 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Directed Immobilization of Janus-AuNP in Heterometallic Nanogaps: a Key Step Toward Integration of Functional Molecular Units in Nanoelectronics
journal, November 2014

  • Babajani, Ninet; Kaulen, Corinna; Homberger, Melanie
  • The Journal of Physical Chemistry C, Vol. 118, Issue 46
  • DOI: 10.1021/jp5085179

Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes, and Nanopores
journal, July 2008


Monolayer-Protected Clusters: Versatile Materials of Electrochemical Importance
journal, July 2016


Surface Plasmons on Metal Nanoparticles:  The Influence of Shape and Physical Environment
journal, March 2007

  • Noguez, Cecilia
  • The Journal of Physical Chemistry C, Vol. 111, Issue 10
  • DOI: 10.1021/jp066539m

Ligand-modulated interactions between charged monolayer-protected Au 144 (SR) 60 gold nanoparticles in physiological saline
journal, January 2015

  • Villarreal, Oscar D.; Chen, Liao Y.; Whetten, Robert L.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 5
  • DOI: 10.1039/C4CP05137H

Gold Thiolate Nanomolecules: Synthesis, Mass Spectrometry, and Characterization
book, January 2014

  • Kumara, Chanaka; Jupally, Vijay Reddy; Dass, Amala
  • Structure and Bonding
  • DOI: 10.1007/430_2014_142

Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities
journal, September 2016


Green Gold: Au 30 (S- t -C 4 H 9 ) 18 Molecules
journal, October 2013

  • Crasto, David; Dass, Amala
  • The Journal of Physical Chemistry C, Vol. 117, Issue 42
  • DOI: 10.1021/jp407341y

Crystal Structure and Theoretical Analysis of Green Gold Au 30 (S- t Bu) 18 Nanomolecules and Their Relation to Au 30 S(S- t Bu) 18
journal, March 2016

  • Dass, Amala; Jones, Tanya; Rambukwella, Milan
  • The Journal of Physical Chemistry C, Vol. 120, Issue 11
  • DOI: 10.1021/acs.jpcc.6b00062

Controlling the Atomic Structure of Au 30 Nanoclusters by a Ligand-Based Strategy
journal, April 2016

  • Higaki, Tatsuya; Liu, Chong; Zeng, Chenjie
  • Angewandte Chemie International Edition, Vol. 55, Issue 23
  • DOI: 10.1002/anie.201601947

Identification of a Highly Luminescent Au 22 (SG) 18 Nanocluster
journal, January 2014

  • Yu, Yong; Luo, Zhentao; Chevrier, Daniel M.
  • Journal of the American Chemical Society, Vol. 136, Issue 4
  • DOI: 10.1021/ja411643u

New Structure Model of Au 22 (SR) 18 : Bitetrahederon Golden Kernel Enclosed by [Au 6 (SR) 6 ] Au(I) Complex
journal, April 2015


Ligand effects on the optical and chiroptical properties of the thiolated Au 18 cluster
journal, January 2016

  • Tlahuice-Flores, Alfredo
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 40
  • DOI: 10.1039/C6CP04298H

Plasmons in Strongly Coupled Metallic Nanostructures
journal, June 2011

  • Halas, Naomi J.; Lal, Surbhi; Chang, Wei-Shun
  • Chemical Reviews, Vol. 111, Issue 6
  • DOI: 10.1021/cr200061k

Atomistic Quantum Plasmonics of Gold Nanowire Arrays
journal, March 2014

  • Sementa, Luca; Marini, Andrea; Barcaro, Giovanni
  • ACS Photonics, Vol. 1, Issue 4
  • DOI: 10.1021/ph500038z

Gap-Dependent Coupling of Ag–Au Nanoparticle Heterodimers Using DNA Origami-Based Self-Assembly
journal, July 2016


(AuAg)144(SR)60 alloy nanomolecules
journal, January 2011


Au144−xCux(SC6H13)60 nanomolecules: effect of Cu incorporation on composition and plasmon-like peak emergence in optical spectra
journal, January 2014

  • Dharmaratne, Asantha C.; Dass, Amala
  • Chemical Communications, Vol. 50, Issue 14
  • DOI: 10.1039/c3cc47060a

ESI-MS Identification of Abundant Copper–Gold Clusters Exhibiting High Plasmonic Character
journal, January 2015

  • Bhattarai, Nabraj; Black, David M.; Boppidi, Snigdha
  • The Journal of Physical Chemistry C, Vol. 119, Issue 20
  • DOI: 10.1021/jp510893h

Comment on “(Au–Ag) 144 (SR) 60 alloy nanomolecules” by C. Kumara and A. Dass, Nanoscale, 2011, 3 , 3064
journal, January 2015

  • Barcaro, Giovanni; Sementa, Luca; Fortunelli, Alessandro
  • Nanoscale, Vol. 7, Issue 17
  • DOI: 10.1039/C4NR00514G

TDDFT Analysis of Optical Properties of Thiol Monolayer-Protected Gold and Intermetallic Silver–Gold Au 144 (SR) 60 and Au 84 Ag 60 (SR) 60 Clusters
journal, August 2014

  • Malola, Sami; Lehtovaara, Lauri; Häkkinen, Hannu
  • The Journal of Physical Chemistry C, Vol. 118, Issue 34
  • DOI: 10.1021/jp505462m

Copper Induces a Core Plasmon in Intermetallic Au (144,145)– x Cu x (SR) 60 Nanoclusters
journal, January 2015

  • Malola, Sami; Hartmann, Michael J.; Häkkinen, Hannu
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 3
  • DOI: 10.1021/jz502637b

Optical absorption of (Ag-Au)133(SCH3)52 bimetallic monolayer-protected clusters
journal, October 2016

  • Fortunelli, Alessandro; Stener, Mauro
  • Progress in Natural Science: Materials International, Vol. 26, Issue 5
  • DOI: 10.1016/j.pnsc.2016.09.002

The Innermost Three Gold Atoms Are Indispensable To Maintain the Structure of the Au 18 (SR) 14 Cluster
journal, September 2016

  • Yu, Yong; Yao, Qiaofeng; Chen, Tiankai
  • The Journal of Physical Chemistry C, Vol. 120, Issue 38
  • DOI: 10.1021/acs.jpcc.6b07795

Designing ligand-enhanced optical absorption of thiolated gold nanoclusters
journal, January 2015

  • Sementa, L.; Barcaro, G.; Dass, A.
  • Chemical Communications, Vol. 51, Issue 37
  • DOI: 10.1039/C5CC01951F

Ligand effects on the structure and vibrational properties of the thiolated Au18 cluster
journal, October 2016


Ligand Effects on the Structure and the Electronic Optical Properties of Anionic Au 25 (SR) 18 Clusters
journal, September 2013

  • Tlahuice-Flores, Alfredo; Whetten, Robert L.; Jose-Yacaman, Miguel
  • The Journal of Physical Chemistry C, Vol. 117, Issue 40
  • DOI: 10.1021/jp407150t

Ligand-Based Toolboxes for Tuning of the Optical Properties of Subnanometer Gold Clusters
journal, October 2016

  • Konishi, Katsuaki; Iwasaki, Mitsuhiro; Sugiuchi, Mizuho
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 21
  • DOI: 10.1021/acs.jpclett.6b01999

Charge Redistribution Effects on the UV–Vis Spectra of Small Ligated Gold Clusters: a Computational Study
journal, January 2015

  • Lugo, G.; Schwanen, V.; Fresch, B.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 20
  • DOI: 10.1021/jp511120j

Metal-Cluster-Sensitized Solar Cells. A New Class of Thiolated Gold Sensitizers Delivering Efficiency Greater Than 2%
journal, June 2013

  • Chen, Yong-Siou; Choi, Hyunbong; Kamat, Prashant V.
  • Journal of the American Chemical Society, Vol. 135, Issue 24
  • DOI: 10.1021/ja403807f

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
journal, April 1990


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

A new time dependent density functional algorithm for large systems and plasmons in metal clusters
journal, July 2015

  • Baseggio, Oscar; Fronzoni, Giovanna; Stener, Mauro
  • The Journal of Chemical Physics, Vol. 143, Issue 2
  • DOI: 10.1063/1.4923368

A new time-dependent density-functional method for molecular plasmonics: Formalism, implementation, and the Au 144 (SH) 60 case study: SOFTWARE NEWS & UPDATES
journal, June 2016

  • Baseggio, Oscar; De Vetta, Martina; Fronzoni, Giovanna
  • International Journal of Quantum Chemistry, Vol. 116, Issue 21
  • DOI: 10.1002/qua.25175

Photoabsorption of Icosahedral Noble Metal Clusters: An Efficient TDDFT Approach to Large-Scale Systems
journal, June 2016

  • Baseggio, Oscar; De Vetta, Martina; Fronzoni, Giovanna
  • The Journal of Physical Chemistry C, Vol. 120, Issue 23
  • DOI: 10.1021/acs.jpcc.6b04709

Time-Dependent Density Functional Response Theory for Molecules
book, November 1995


Exchange-correlation potential with correct asymptotic behavior
journal, April 1994


Relativistic regular two‐component Hamiltonians
journal, September 1993

  • Lenthe, E. van; Baerends, E. J.; Snijders, J. G.
  • The Journal of Chemical Physics, Vol. 99, Issue 6
  • DOI: 10.1063/1.466059

Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis
journal, August 1980

  • Vosko, S. H.; Wilk, L.; Nusair, M.
  • Canadian Journal of Physics, Vol. 58, Issue 8
  • DOI: 10.1139/p80-159

Optical Properties of Au Nanoclusters from TD-DFT Calculations
journal, March 2011

  • Durante, Nicola; Fortunelli, Alessandro; Broyer, Michel
  • The Journal of Physical Chemistry C, Vol. 115, Issue 14
  • DOI: 10.1021/jp112217g

Extension of the Time-Dependent Density Functional Complex Polarizability Algorithm to Circular Dichroism: Implementation and Applications to Ag 8 and Au 38 (SC 2 H 4 C 6 H 5 ) 24
journal, October 2016

  • Baseggio, Oscar; Toffoli, Daniele; Fronzoni, Giovanna
  • The Journal of Physical Chemistry C, Vol. 120, Issue 42
  • DOI: 10.1021/acs.jpcc.6b07323

Isomerism in Au 28 (SR) 20 Nanocluster and Stable Structures
journal, January 2016

  • Chen, Yuxiang; Liu, Chong; Tang, Qing
  • Journal of the American Chemical Society, Vol. 138, Issue 5
  • DOI: 10.1021/jacs.5b12094

Au 36 (SPh) 23 Nanomolecules
journal, June 2011

  • Nimmala, Praneeth Reddy; Dass, Amala
  • Journal of the American Chemical Society, Vol. 133, Issue 24
  • DOI: 10.1021/ja201685f

Total Structure and Electronic Properties of the Gold Nanocrystal Au 36 (SR) 24
journal, November 2012

  • Zeng, Chenjie; Qian, Huifeng; Li, Tao
  • Angewandte Chemie International Edition, Vol. 51, Issue 52
  • DOI: 10.1002/anie.201207098

Thiol Ligand-Induced Transformation of Au 38 (SC 2 H 4 Ph) 24 to Au 36 (SPh- t -Bu) 24
journal, June 2013

  • Zeng, Chenjie; Liu, Chunyan; Pei, Yong
  • ACS Nano, Vol. 7, Issue 7
  • DOI: 10.1021/nn401971g

Cyclopentanethiolato-Protected Au 36 (SC 5 H 9 ) 24 Nanocluster: Crystal Structure and Implications for the Steric and Electronic Effects of Ligand
journal, March 2014

  • Das, Anindita; Liu, Chong; Zeng, Chenjie
  • The Journal of Physical Chemistry A, Vol. 118, Issue 37
  • DOI: 10.1021/jp501073a

Au 36 (SPh) 24 Nanomolecules: X-ray Crystal Structure, Optical Spectroscopy, Electrochemistry, and Theoretical Analysis
journal, October 2014

  • Nimmala, Praneeth Reddy; Knoppe, Stefan; Jupally, Vijay Reddy
  • The Journal of Physical Chemistry B, Vol. 118, Issue 49
  • DOI: 10.1021/jp506508x

Birth of the Localized Surface Plasmon Resonance in Monolayer-Protected Gold Nanoclusters
journal, October 2013

  • Malola, Sami; Lehtovaara, Lauri; Enkovaara, Jussi
  • ACS Nano, Vol. 7, Issue 11
  • DOI: 10.1021/nn4046634

Theoretical Chemistry of Gold
journal, August 2004


Au 21 S(SAdm) 15 : An Anisotropic Gold Nanomolecule. Optical and Photoluminescence Spectroscopy and First-Principles Theoretical Analysis
journal, January 2017

  • Fortunelli, Alessandro; Sementa, Luca; Thanthirige, Viraj Dhanushka
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 2
  • DOI: 10.1021/acs.jpclett.6b02810

Structures and chiroptical properties of the BINAS-monosubstituted Au38(SCH3)24 cluster
journal, January 2013

  • Molina, Bertha; Sánchez-Castillo, Ariadna; Knoppe, Stefan
  • Nanoscale, Vol. 5, Issue 22
  • DOI: 10.1039/c3nr03403h

Works referencing / citing this record:

Au 36 (SePh) 24 nanomolecules: synthesis, optical spectroscopy and theoretical analysis
journal, January 2018

  • Rambukwella, Milan; Chang, Le; Ravishanker, Anish
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 19
  • DOI: 10.1039/c8cp01564c

Understanding energy transfer with luminescent gold nanoclusters: a promising new transduction modality for biorelated applications
journal, January 2017

  • Díaz, Sebastián A.; Hastman, David A.; Medintz, Igor L.
  • Journal of Materials Chemistry B, Vol. 5, Issue 39
  • DOI: 10.1039/c7tb01654a

Chirality in bare and ligand-protected metal nanoclusters
journal, January 2018


Pd doping, conformational, and charge effects on the dichroic response of a monolayer protected Au 38 (SR) 24 nanocluster
journal, January 2019

  • Toffoli, Daniele; Baseggio, Oscar; Fronzoni, Giovanna
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 7
  • DOI: 10.1039/c8cp04107e

Modulating photo-luminescence of Au 2 Cu 6 nanoclusters via ligand-engineering
journal, January 2017


Time-dependent density-functional study of the photoabsorption spectrum of Au 25 (SC 2 H 4 C 6 H 5 ) 18 anion: Validation of the computational protocol
journal, July 2018

  • Baseggio, Oscar; De Vetta, Martina; Fronzoni, Giovanna
  • International Journal of Quantum Chemistry, Vol. 118, Issue 22
  • DOI: 10.1002/qua.25769