skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interstaple Dithiol Cross-Linking in Au(25)(SR)(18) Nanomolecules: A Combined Mass Spectrometric and Computational Study

Abstract

A systematic study of cross-linking chemistry of the Au{sub 25}(SR){sub 18} nanomolecule by dithiols of varying chain length, HS-(CH2)n-SH where n = 2, 3, 4, 5, and 6, is presented here. Monothiolated Au{sub 25} has six [RSAuSRAuSR] staple motifs on its surface, and MALDI mass spectrometry data of the ligand exchanged clusters show that propane (C3) and butane (C4) dithiols have ideal chain lengths for interstaple cross-linking and that up to six C3 or C4 dithiols can be facilely exchanged onto the cluster surface. Propanedithiol predominately exchanges with two monothiols at a time, making cross-linking bridges, while butanedithiol can exchange with either one or two monothiols at a time. The extent of cross-linking can be controlled by the Au{sub 25}(SR){sub 18} to dithiol ratio, the reaction time of ligand exchange, or the addition of a hydrophobic tail to the dithiol. MALDI MS suggests that during ethane (C2) dithiol exchange, two ethanedithiols become connected by a disulfide bond; this result is supported by density functional theory (DFT) prediction of the optimal chain length for the intrastaple coupling. Both optical absorption spectroscopy and DFT computations show that the electronic structure of the Au{sub 25} nanomolecule retains its main features after exchange ofmore » up to eight monothiol ligands.« less

Authors:
 [1];  [2];  [2];  [2];  [2];  [2];  [2]
  1. ORNL
  2. University of Mississippi, The
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1044719
DOE Contract Number:  
DE-AC05-00OR22725
Resource Type:
Journal Article
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 133; Journal Issue: 50; Journal ID: ISSN 0002-7863
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ABSORPTION SPECTROSCOPY; BUTANE; CHAINS; CHEMISTRY; CROSS-LINKING; DISULFIDES; DITHIOLS; ELECTRONIC STRUCTURE; ETHANE; FORECASTING; FUNCTIONALS; ION EXCHANGE; LIGANDS; MASS SPECTROSCOPY; PROPANE

Citation Formats

Jiang, Deen, Dass, Amala, Tschumper, Gregory, Mattern, Daniell, Van Dornshuld, Eric, Kota, Rajesh, and Jupally, Vijay. Interstaple Dithiol Cross-Linking in Au(25)(SR)(18) Nanomolecules: A Combined Mass Spectrometric and Computational Study. United States: N. p., 2011. Web.
Jiang, Deen, Dass, Amala, Tschumper, Gregory, Mattern, Daniell, Van Dornshuld, Eric, Kota, Rajesh, & Jupally, Vijay. Interstaple Dithiol Cross-Linking in Au(25)(SR)(18) Nanomolecules: A Combined Mass Spectrometric and Computational Study. United States.
Jiang, Deen, Dass, Amala, Tschumper, Gregory, Mattern, Daniell, Van Dornshuld, Eric, Kota, Rajesh, and Jupally, Vijay. 2011. "Interstaple Dithiol Cross-Linking in Au(25)(SR)(18) Nanomolecules: A Combined Mass Spectrometric and Computational Study". United States.
@article{osti_1044719,
title = {Interstaple Dithiol Cross-Linking in Au(25)(SR)(18) Nanomolecules: A Combined Mass Spectrometric and Computational Study},
author = {Jiang, Deen and Dass, Amala and Tschumper, Gregory and Mattern, Daniell and Van Dornshuld, Eric and Kota, Rajesh and Jupally, Vijay},
abstractNote = {A systematic study of cross-linking chemistry of the Au{sub 25}(SR){sub 18} nanomolecule by dithiols of varying chain length, HS-(CH2)n-SH where n = 2, 3, 4, 5, and 6, is presented here. Monothiolated Au{sub 25} has six [RSAuSRAuSR] staple motifs on its surface, and MALDI mass spectrometry data of the ligand exchanged clusters show that propane (C3) and butane (C4) dithiols have ideal chain lengths for interstaple cross-linking and that up to six C3 or C4 dithiols can be facilely exchanged onto the cluster surface. Propanedithiol predominately exchanges with two monothiols at a time, making cross-linking bridges, while butanedithiol can exchange with either one or two monothiols at a time. The extent of cross-linking can be controlled by the Au{sub 25}(SR){sub 18} to dithiol ratio, the reaction time of ligand exchange, or the addition of a hydrophobic tail to the dithiol. MALDI MS suggests that during ethane (C2) dithiol exchange, two ethanedithiols become connected by a disulfide bond; this result is supported by density functional theory (DFT) prediction of the optimal chain length for the intrastaple coupling. Both optical absorption spectroscopy and DFT computations show that the electronic structure of the Au{sub 25} nanomolecule retains its main features after exchange of up to eight monothiol ligands.},
doi = {},
url = {https://www.osti.gov/biblio/1044719}, journal = {Journal of the American Chemical Society},
issn = {0002-7863},
number = 50,
volume = 133,
place = {United States},
year = {Sat Jan 01 00:00:00 EST 2011},
month = {Sat Jan 01 00:00:00 EST 2011}
}