skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II

Abstract

The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3–UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3–UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former andmore » ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN > 3 nm), while the profiles of larger particles (e.g. CN > 100 nm) are controlled by the same processes as the component mass profiles, plus the size distribution of primary emissions. Here, we also show that the processes that affect the AOD-normalised radiative forcing in the model are predominantly those that affect the vertical mass distribution, in particular convective transport, in-cloud scavenging, aqueous oxidation, ageing and the vertical extent of biomass-burning emissions.« less

Authors:
 [1];  [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [10];  [11];  [6];  [12];  [13];  [14];  [3];  [15];  [11];  [11] more »;  [16];  [17];  [5];  [18] « less
  1. Univ. of Oxford, Oxford (United Kingdom)
  2. Met Office Hadley Centre, Exeter (United Kingdom)
  3. Univ. of Leeds, Leeds (United Kingdom)
  4. Univ. of Reading, Reading (United Kingdom)
  5. Columbia Univ., New York, NY (United States); NASA Goddard Inst. for Space Studies (GISS), New York, NY (United States)
  6. Finnish Meteorological Institute, Kuopio (Finland)
  7. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)
  8. European Commission, Ispra (Italy). Joint Research Centre
  9. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  10. Norwegian Meteorological Institute, Oslo (Norway); Univ. of Oslo, Oslo (Norway)
  11. Norwegian Meteorological Institute, Oslo (Norway)
  12. Univ. of Wyoming, Laramie, WY (United States)
  13. State Univ. of New York (SUNY), Albany, NY (United States)
  14. Royal Netherlands Meteorological Institute, De Bilt (The Netherlands)
  15. Canadian Centre for Climate Modelling and Analysis, Victoria, BC (Canada)
  16. Center for International Climate and Environmental Research - Oslo (CICERO), Oslo (Norway)
  17. Kyushu Univ., Fukuoka (Japan)
  18. Max Planck Inst. for Meteorology, Hamburg (Germany); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1337240
Report Number(s):
PNNL-SA-109907
Journal ID: ISSN 1680-7324; KP1703010
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 16; Journal Issue: 4; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Kipling, Zak, Stier, Philip, Johnson, Colin E., Mann, Graham W., Bellouin, Nicolas, Bauer, Susanne E., Bergman, Tommi, Chin, Mian, Diehl, Thomas, Ghan, Steven J., Iversen, Trond, Kirkevag, Alf, Kokkola, Harri, Liu, Xiaohong, Luo, Gan, van Noije, Twan, Pringle, Kirsty J., von Salzen, Knut, Schulz, Michael, Seland, Oyvind, Skeie, Ragnhild B., Takemura, Toshihiko, Tsigaridis, Kostas, and Zhang, Kai. What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II. United States: N. p., 2016. Web. doi:10.5194/acp-16-2221-2016.
Kipling, Zak, Stier, Philip, Johnson, Colin E., Mann, Graham W., Bellouin, Nicolas, Bauer, Susanne E., Bergman, Tommi, Chin, Mian, Diehl, Thomas, Ghan, Steven J., Iversen, Trond, Kirkevag, Alf, Kokkola, Harri, Liu, Xiaohong, Luo, Gan, van Noije, Twan, Pringle, Kirsty J., von Salzen, Knut, Schulz, Michael, Seland, Oyvind, Skeie, Ragnhild B., Takemura, Toshihiko, Tsigaridis, Kostas, & Zhang, Kai. What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II. United States. doi:10.5194/acp-16-2221-2016.
Kipling, Zak, Stier, Philip, Johnson, Colin E., Mann, Graham W., Bellouin, Nicolas, Bauer, Susanne E., Bergman, Tommi, Chin, Mian, Diehl, Thomas, Ghan, Steven J., Iversen, Trond, Kirkevag, Alf, Kokkola, Harri, Liu, Xiaohong, Luo, Gan, van Noije, Twan, Pringle, Kirsty J., von Salzen, Knut, Schulz, Michael, Seland, Oyvind, Skeie, Ragnhild B., Takemura, Toshihiko, Tsigaridis, Kostas, and Zhang, Kai. Fri . "What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II". United States. doi:10.5194/acp-16-2221-2016. https://www.osti.gov/servlets/purl/1337240.
@article{osti_1337240,
title = {What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II},
author = {Kipling, Zak and Stier, Philip and Johnson, Colin E. and Mann, Graham W. and Bellouin, Nicolas and Bauer, Susanne E. and Bergman, Tommi and Chin, Mian and Diehl, Thomas and Ghan, Steven J. and Iversen, Trond and Kirkevag, Alf and Kokkola, Harri and Liu, Xiaohong and Luo, Gan and van Noije, Twan and Pringle, Kirsty J. and von Salzen, Knut and Schulz, Michael and Seland, Oyvind and Skeie, Ragnhild B. and Takemura, Toshihiko and Tsigaridis, Kostas and Zhang, Kai},
abstractNote = {The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3–UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3–UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN > 3 nm), while the profiles of larger particles (e.g. CN > 100 nm) are controlled by the same processes as the component mass profiles, plus the size distribution of primary emissions. Here, we also show that the processes that affect the AOD-normalised radiative forcing in the model are predominantly those that affect the vertical mass distribution, in particular convective transport, in-cloud scavenging, aqueous oxidation, ageing and the vertical extent of biomass-burning emissions.},
doi = {10.5194/acp-16-2221-2016},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 4,
volume = 16,
place = {United States},
year = {2016},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Aerosols, Cloud Microphysics, and Fractional Cloudiness
journal, September 1989


A time-averaged inventory of subaerial volcanic sulfur emissions
journal, October 1998

  • Andres, R. J.; Kasgnoc, A. D.
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D19
  • DOI: 10.1029/98JD02091

Atmospheric turbidity, global illumination and planetary albedo of the earth
journal, November 1962


MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models
journal, January 2008

  • Bauer, S. E.; Wright, D. L.; Koch, D.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 20
  • DOI: 10.5194/acp-8-6003-2008

Historical and future black carbon deposition on the three ice caps: Ice core measurements and model simulations from 1850 to 2100: HISTORICAL AND FUTURE BC DEPOSITION
journal, July 2013

  • Bauer, Susanne E.; Bausch, Alexandra; Nazarenko, Larissa
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 14
  • DOI: 10.1002/jgrd.50612

Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model
journal, January 2013

  • Bellouin, N.; Mann, G. W.; Woodhouse, M. T.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 6
  • DOI: 10.5194/acp-13-3027-2013

Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model
journal, January 2012

  • Bergman, T.; Kerminen, V. -M.; Korhonen, H.
  • Geoscientific Model Development, Vol. 5, Issue 3
  • DOI: 10.5194/gmd-5-845-2012

Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties
journal, October 2000

  • Chin, Mian; Rood, Richard B.; Lin, Shian-Jiann
  • Journal of Geophysical Research: Atmospheres, Vol. 105, Issue D20
  • DOI: 10.1029/2000JD900384

A new dynamical core for the Met Office's global and regional modelling of the atmosphere
journal, April 2005

  • Davies, T.; Cullen, M. J. P.; Malcolm, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 131, Issue 608
  • DOI: 10.1256/qj.04.101

The ERA-Interim reanalysis: configuration and performance of the data assimilation system
journal, April 2011

  • Dee, D. P.; Uppala, S. M.; Simmons, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 656
  • DOI: 10.1002/qj.828

Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom
journal, January 2006

  • Dentener, F.; Kinne, S.; Bond, T.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 12
  • DOI: 10.5194/acp-6-4321-2006

Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO<sub>2</sub> from 1980 to 2010 for hindcast model experiments
journal, January 2012


Shortwave radiative forcing and efficiency of key aerosol types using AERONET data
journal, January 2012

  • García, O. E.; Díaz, J. P.; Expósito, F. J.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 11
  • DOI: 10.5194/acp-12-5129-2012

Sources and distributions of dust aerosols simulated with the GOCART model
journal, September 2001

  • Ginoux, Paul; Chin, Mian; Tegen, Ina
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D17
  • DOI: 10.1029/2000JD000053

Radiative forcing and climate response
journal, March 1997

  • Hansen, J.; Sato, M.; Ruedy, R.
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D6
  • DOI: 10.1029/96JD03436

Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system
journal, January 2011

  • Hewitt, H. T.; Copsey, D.; Culverwell, I. D.
  • Geoscientific Model Development, Vol. 4, Issue 2
  • DOI: 10.5194/gmd-4-223-2011

On the potential of assimilating meteorological analyses in a global climate model for the purpose of model validation
journal, July 1996

  • Jeuken, A. B. M.; Siegmund, P. C.; Heijboer, L. C.
  • Journal of Geophysical Research: Atmospheres, Vol. 101, Issue D12
  • DOI: 10.1029/96JD01218

The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus
journal, April 2004

  • Johnson, B. T.; Shine, K. P.; Forster, P. M.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 130, Issue 599
  • DOI: 10.1256/qj.03.61

A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month
journal, June 1999

  • Kettle, A. J.; Andreae, M. O.; Amouroux, D.
  • Global Biogeochemical Cycles, Vol. 13, Issue 2
  • DOI: 10.1029/1999GB900004

Constraints on aerosol processes in climate models from vertically-resolved aircraft observations of black carbon
journal, January 2013

  • Kipling, Z.; Stier, P.; Schwarz, J. P.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 12
  • DOI: 10.5194/acp-13-5969-2013

Aerosol–climate interactions in the Norwegian Earth System Model – NorESM1-M
journal, January 2013

  • Kirkevåg, A.; Iversen, T.; Seland, Ø.
  • Geoscientific Model Development, Vol. 6, Issue 1
  • DOI: 10.5194/gmd-6-207-2013

Black carbon semi-direct effects on cloud cover: review and synthesis
journal, January 2010


Global impacts of aerosols from particular source regions and sectors
journal, January 2007

  • Koch, Dorothy; Bond, Tami C.; Streets, David
  • Journal of Geophysical Research, Vol. 112, Issue D2
  • DOI: 10.1029/2005JD007024

Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results: AEROSOL PROFILES IN GLOBAL MODELS
journal, May 2012

  • Koffi, Brigitte; Schulz, Michael; Bréon, Francois-Marie
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D10
  • DOI: 10.1029/2011JD016858

Parameterizations for sulfuric acid/water nucleation rates
journal, April 1998

  • Kulmala, Markka; Laaksonen, Ari; Pirjola, Liisa
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D7
  • DOI: 10.1029/97JD03718

Cluster activation theory as an explanation of the linear dependence between formation rate of 3nm particles and sulphuric acid concentration
journal, January 2006

  • Kulmala, M.; Lehtinen, K. E. J.; Laaksonen, A.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 3
  • DOI: 10.5194/acp-6-787-2006

Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application
journal, January 2010

  • Lamarque, J. -F.; Bond, T. C.; Eyring, V.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 15
  • DOI: 10.5194/acp-10-7017-2010

Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters
journal, January 2011

  • Lee, L. A.; Carslaw, K. S.; Pringle, K. J.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 23
  • DOI: 10.5194/acp-11-12253-2011

Mapping the uncertainty in global CCN using emulation
journal, January 2012

  • Lee, L. A.; Carslaw, K. S.; Pringle, K. J.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 20
  • DOI: 10.5194/acp-12-9739-2012

The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei
journal, January 2013

  • Lee, L. A.; Pringle, K. J.; Reddington, C. L.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 17
  • DOI: 10.5194/acp-13-8879-2013

Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5
journal, January 2012

  • Liu, X.; Easter, R. C.; Ghan, S. J.
  • Geoscientific Model Development, Vol. 5, Issue 3
  • DOI: 10.5194/gmd-5-709-2012

Global indirect aerosol effects: a review
journal, January 2005


Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model
journal, January 2010

  • Mann, G. W.; Carslaw, K. S.; Spracklen, D. V.
  • Geoscientific Model Development, Vol. 3, Issue 2
  • DOI: 10.5194/gmd-3-519-2010

Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme
journal, January 1995

  • Marticorena, B.; Bergametti, G.
  • Journal of Geophysical Research, Vol. 100, Issue D8
  • DOI: 10.1029/95JD00690

Description of Aerosol Dynamics by the Quadrature Method of Moments
journal, January 1997


OH and halogen atom influence on the variability of non-methane hydrocarbons in the Antarctic Boundary Layer
journal, January 2007


Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation
journal, January 2009

  • Myhre, G.; Berglen, T. F.; Johnsrud, M.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 4
  • DOI: 10.5194/acp-9-1365-2009

Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
journal, January 2013

  • Myhre, G.; Samset, B. H.; Schulz, M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 4
  • DOI: 10.5194/acp-13-1853-2013

Evaluation of the new UKCA climate-composition model – Part 2: The Troposphere
journal, January 2014

  • O&apos;Connor, F. M.; Johnson, C. E.; Morgenstern, O.
  • Geoscientific Model Development, Vol. 7, Issue 1
  • DOI: 10.5194/gmd-7-41-2014

Simulation of mineral dust aerosol with Piecewise Log-normal Approximation (PLA) in CanAM4-PAM
journal, January 2012


Effects of absorbing aerosols in cloudy skies: a satellite study over the Atlantic Ocean
journal, January 2011


Distributions and regional budgets of aerosols and their precursors simulated with the EMAC chemistry-climate model
journal, January 2012

  • Pozzer, A.; de Meij, A.; Pringle, K. J.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 2
  • DOI: 10.5194/acp-12-961-2012

Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1)
journal, January 2010

  • Pringle, K. J.; Tost, H.; Message, S.
  • Geoscientific Model Development, Vol. 3, Issue 2
  • DOI: 10.5194/gmd-3-391-2010

RCP 8.5—A scenario of comparatively high greenhouse gas emissions
journal, August 2011


Impact of carbonaceous aerosol emissions on regional climate change
journal, April 2006


Vertical dependence of black carbon, sulphate and biomass burning aerosol radiative forcing: VERTICAL DEPENDENCE OF AEROSOL FORCING
journal, December 2011

  • Samset, Bjørn H.; Myhre, Gunnar
  • Geophysical Research Letters, Vol. 38, Issue 24
  • DOI: 10.1029/2011GL049697

Black carbon vertical profiles strongly affect its radiative forcing uncertainty
journal, January 2013

  • Samset, B. H.; Myhre, G.; Schulz, M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 5
  • DOI: 10.5194/acp-13-2423-2013

Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations
journal, January 2014


Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations
journal, January 2006

  • Schulz, M.; Textor, C.; Kinne, S.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 12
  • DOI: 10.5194/acp-6-5225-2006

Global-scale black carbon profiles observed in the remote atmosphere and compared to models: HIPPO1 BLACK CARBON PROFILES
journal, September 2010

  • Schwarz, J. P.; Spackman, J. R.; Gao, R. S.
  • Geophysical Research Letters, Vol. 37, Issue 18
  • DOI: 10.1029/2010GL044372

Global-scale seasonally resolved black carbon vertical profiles over the Pacific: GLOBAL-SCALE BC PROFILES
journal, October 2013

  • Schwarz, J. P.; Samset, B. H.; Perring, A. E.
  • Geophysical Research Letters, Vol. 40, Issue 20
  • DOI: 10.1002/2013GL057775

Anthropogenic radiative forcing time series from pre-industrial times until 2010
journal, January 2011

  • Skeie, R. B.; Berntsen, T. K.; Myhre, G.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 22
  • DOI: 10.5194/acp-11-11827-2011

Predictions for particle deposition to vegetative canopies
journal, January 1982


Global inventory of sulfur emissions with 1°×1° resolution
journal, January 1992

  • Spiro, Peter A.; Jacob, Daniel J.; Logan, Jennifer A.
  • Journal of Geophysical Research, Vol. 97, Issue D5
  • DOI: 10.1029/91JD03139

A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties
journal, January 2005

  • Spracklen, D. V.; Pringle, K. J.; Carslaw, K. S.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 8
  • DOI: 10.5194/acp-5-2227-2005

The aerosol-climate model ECHAM5-HAM
journal, January 2005

  • Stier, P.; Feichter, J.; Kinne, S.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 4
  • DOI: 10.5194/acp-5-1125-2005

Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model
journal, January 2005


Technical Note: Description and assessment of a nudged version of the new dynamics Unified Model
journal, January 2008

  • Telford, P. J.; Braesicke, P.; Morgenstern, O.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 6
  • DOI: 10.5194/acp-8-1701-2008

Implementation of the Fast-JX Photolysis scheme (v6.4) into the UKCA component of the MetUM chemistry-climate model (v7.3)
journal, January 2013

  • Telford, P. J.; Abraham, N. L.; Archibald, A. T.
  • Geoscientific Model Development, Vol. 6, Issue 1
  • DOI: 10.5194/gmd-6-161-2013

Analysis and quantification of the diversities of aerosol life cycles within AeroCom
journal, January 2006

  • Textor, C.; Schulz, M.; Guibert, S.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 7
  • DOI: 10.5194/acp-6-1777-2006

Uncertainties and importance of sea spray composition on aerosol direct and indirect effects: IMPORTANCE OF SEA-SPRAY COMPOSITION
journal, January 2013

  • Tsigaridis, Kostas; Koch, Dorothy; Menon, Surabi
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 1
  • DOI: 10.1029/2012JD018165

Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009)
journal, January 2010

  • van der Werf, G. R.; Randerson, J. T.; Giglio, L.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 23
  • DOI: 10.5194/acp-10-11707-2010

Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth
journal, January 2014

  • van Noije, T. P. C.; Le Sager, P.; Segers, A. J.
  • Geoscientific Model Development, Vol. 7, Issue 5
  • DOI: 10.5194/gmd-7-2435-2014

M7: An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models: AEROSOL MICROPHYSICS MODULE
journal, November 2004

  • Vignati, Elisabetta; Wilson, Julian; Stier, Philip
  • Journal of Geophysical Research: Atmospheres, Vol. 109, Issue D22
  • DOI: 10.1029/2003JD004485

Piecewise log-normal approximation of size distributions for aerosol modelling
journal, January 2006


Global budget and radiative forcing of black carbon aerosol: Constraints from pole-to-pole (HIPPO) observations across the Pacific: GLOBAL BC BUDGET AND RADIATIVE FORCING
journal, January 2014

  • Wang, Qiaoqiao; Jacob, Daniel J.; Spackman, J. Ryan
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 1
  • DOI: 10.1002/2013JD020824

Direct and semi-direct radiative forcing of smoke aerosols over clouds
journal, January 2012


A microphysically based precipitation scheme for the UK meteorological office unified model
journal, July 1999

  • Wilson, Damian R.; Ballard, Susan P.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 125, Issue 557
  • DOI: 10.1002/qj.49712555707

PC2: A prognostic cloud fraction and condensation scheme. II: Climate model simulations
journal, October 2008

  • Wilson, Damian R.; Bushell, Andrew. C.; Kerr-Munslow, Amanda M.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 134, Issue 637
  • DOI: 10.1002/qj.332

The global 3-D distribution of tropospheric aerosols as characterized by CALIOP
journal, January 2013

  • Winker, D. M.; Tackett, J. L.; Getzewich, B. J.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 6
  • DOI: 10.5194/acp-13-3345-2013

Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model
journal, August 2001

  • Woodward, S.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D16
  • DOI: 10.1029/2000JD900795

Spatial distributions of particle number concentrations in the global troposphere: Simulations, observations, and implications for nucleation mechanisms
journal, January 2010

  • Yu, Fangqun; Luo, Gan; Bates, Timothy S.
  • Journal of Geophysical Research, Vol. 115, Issue D17
  • DOI: 10.1029/2009JD013473

How much can the vertical distribution of black carbon affect its global direct radiative forcing?: HOW MUCH DO BC PROFILES AFFECT FORCING?
journal, October 2010

  • Zarzycki, Colin M.; Bond, Tami C.
  • Geophysical Research Letters, Vol. 37, Issue 20
  • DOI: 10.1029/2010GL044555

The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations
journal, January 2012

  • Zhang, K.; O&apos;Donnell, D.; Kazil, J.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 19
  • DOI: 10.5194/acp-12-8911-2012

A size-segregated particle dry deposition scheme for an atmospheric aerosol module
journal, January 2001


    Works referencing / citing this record:

    The impact of precipitation evaporation on the atmospheric aerosol distribution in EC-Earth v3.2.0
    journal, January 2018

    • de Bruine, Marco; Krol, Maarten; van Noije, Twan
    • Geoscientific Model Development, Vol. 11, Issue 4
    • DOI: 10.5194/gmd-11-1443-2018