DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II

Abstract

The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3–UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3–UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former andmore » ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN > 3 nm), while the profiles of larger particles (e.g. CN > 100 nm) are controlled by the same processes as the component mass profiles, plus the size distribution of primary emissions. Here, we also show that the processes that affect the AOD-normalised radiative forcing in the model are predominantly those that affect the vertical mass distribution, in particular convective transport, in-cloud scavenging, aqueous oxidation, ageing and the vertical extent of biomass-burning emissions.« less

Authors:
 [1];  [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [10];  [11];  [6];  [12];  [13];  [14];  [3];  [15];  [11];  [11] more »;  [16];  [17];  [5];  [18] « less
  1. Univ. of Oxford, Oxford (United Kingdom)
  2. Met Office Hadley Centre, Exeter (United Kingdom)
  3. Univ. of Leeds, Leeds (United Kingdom)
  4. Univ. of Reading, Reading (United Kingdom)
  5. Columbia Univ., New York, NY (United States); NASA Goddard Inst. for Space Studies (GISS), New York, NY (United States)
  6. Finnish Meteorological Institute, Kuopio (Finland)
  7. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)
  8. European Commission, Ispra (Italy). Joint Research Centre
  9. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  10. Norwegian Meteorological Institute, Oslo (Norway); Univ. of Oslo, Oslo (Norway)
  11. Norwegian Meteorological Institute, Oslo (Norway)
  12. Univ. of Wyoming, Laramie, WY (United States)
  13. State Univ. of New York (SUNY), Albany, NY (United States)
  14. Royal Netherlands Meteorological Institute, De Bilt (The Netherlands)
  15. Canadian Centre for Climate Modelling and Analysis, Victoria, BC (Canada)
  16. Center for International Climate and Environmental Research - Oslo (CICERO), Oslo (Norway)
  17. Kyushu Univ., Fukuoka (Japan)
  18. Max Planck Inst. for Meteorology, Hamburg (Germany); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1337240
Report Number(s):
PNNL-SA-109907
Journal ID: ISSN 1680-7324; KP1703010
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 16; Journal Issue: 4; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Kipling, Zak, Stier, Philip, Johnson, Colin E., Mann, Graham W., Bellouin, Nicolas, Bauer, Susanne E., Bergman, Tommi, Chin, Mian, Diehl, Thomas, Ghan, Steven J., Iversen, Trond, Kirkevag, Alf, Kokkola, Harri, Liu, Xiaohong, Luo, Gan, van Noije, Twan, Pringle, Kirsty J., von Salzen, Knut, Schulz, Michael, Seland, Oyvind, Skeie, Ragnhild B., Takemura, Toshihiko, Tsigaridis, Kostas, and Zhang, Kai. What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II. United States: N. p., 2016. Web. doi:10.5194/acp-16-2221-2016.
Kipling, Zak, Stier, Philip, Johnson, Colin E., Mann, Graham W., Bellouin, Nicolas, Bauer, Susanne E., Bergman, Tommi, Chin, Mian, Diehl, Thomas, Ghan, Steven J., Iversen, Trond, Kirkevag, Alf, Kokkola, Harri, Liu, Xiaohong, Luo, Gan, van Noije, Twan, Pringle, Kirsty J., von Salzen, Knut, Schulz, Michael, Seland, Oyvind, Skeie, Ragnhild B., Takemura, Toshihiko, Tsigaridis, Kostas, & Zhang, Kai. What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II. United States. https://doi.org/10.5194/acp-16-2221-2016
Kipling, Zak, Stier, Philip, Johnson, Colin E., Mann, Graham W., Bellouin, Nicolas, Bauer, Susanne E., Bergman, Tommi, Chin, Mian, Diehl, Thomas, Ghan, Steven J., Iversen, Trond, Kirkevag, Alf, Kokkola, Harri, Liu, Xiaohong, Luo, Gan, van Noije, Twan, Pringle, Kirsty J., von Salzen, Knut, Schulz, Michael, Seland, Oyvind, Skeie, Ragnhild B., Takemura, Toshihiko, Tsigaridis, Kostas, and Zhang, Kai. Fri . "What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II". United States. https://doi.org/10.5194/acp-16-2221-2016. https://www.osti.gov/servlets/purl/1337240.
@article{osti_1337240,
title = {What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II},
author = {Kipling, Zak and Stier, Philip and Johnson, Colin E. and Mann, Graham W. and Bellouin, Nicolas and Bauer, Susanne E. and Bergman, Tommi and Chin, Mian and Diehl, Thomas and Ghan, Steven J. and Iversen, Trond and Kirkevag, Alf and Kokkola, Harri and Liu, Xiaohong and Luo, Gan and van Noije, Twan and Pringle, Kirsty J. and von Salzen, Knut and Schulz, Michael and Seland, Oyvind and Skeie, Ragnhild B. and Takemura, Toshihiko and Tsigaridis, Kostas and Zhang, Kai},
abstractNote = {The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3–UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3–UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN > 3 nm), while the profiles of larger particles (e.g. CN > 100 nm) are controlled by the same processes as the component mass profiles, plus the size distribution of primary emissions. Here, we also show that the processes that affect the AOD-normalised radiative forcing in the model are predominantly those that affect the vertical mass distribution, in particular convective transport, in-cloud scavenging, aqueous oxidation, ageing and the vertical extent of biomass-burning emissions.},
doi = {10.5194/acp-16-2221-2016},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 4,
volume = 16,
place = {United States},
year = {Fri Feb 26 00:00:00 EST 2016},
month = {Fri Feb 26 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 63 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

M7: An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models: AEROSOL MICROPHYSICS MODULE
journal, November 2004

  • Vignati, Elisabetta; Wilson, Julian; Stier, Philip
  • Journal of Geophysical Research: Atmospheres, Vol. 109, Issue D22
  • DOI: 10.1029/2003JD004485

The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei
journal, January 2013

  • Lee, L. A.; Pringle, K. J.; Reddington, C. L.
  • Atmospheric Chemistry and Physics Discussions, Vol. 13, Issue 3
  • DOI: 10.5194/acpd-13-6295-2013

Piecewise log-normal approximation of size distributions for aerosol modelling
posted_content, June 2005


Simulation of mineral dust aerosol with Piecewise Log-normal Approximation (PLA) in CanAM4-PAM
journal, January 2012


On the potential of assimilating meteorological analyses in a global climate model for the purpose of model validation
journal, July 1996

  • Jeuken, A. B. M.; Siegmund, P. C.; Heijboer, L. C.
  • Journal of Geophysical Research: Atmospheres, Vol. 101, Issue D12
  • DOI: 10.1029/96JD01218

Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO<sub>2</sub> from 1980 to 2010 for hindcast model experiments
journal, January 2012


MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models
journal, January 2008

  • Bauer, S. E.; Wright, D.; Koch, D.
  • Atmospheric Chemistry and Physics Discussions, Vol. 8, Issue 3
  • DOI: 10.5194/acpd-8-9931-2008

Cluster activation theory as an explanation of the linear dependence between formation rate of 3nm particles and sulphuric acid concentration
journal, January 2006

  • Kulmala, M.; Lehtinen, K. E. J.; Laaksonen, A.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 3
  • DOI: 10.5194/acp-6-787-2006

Sources and distributions of dust aerosols simulated with the GOCART model
journal, September 2001

  • Ginoux, Paul; Chin, Mian; Tegen, Ina
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D17
  • DOI: 10.1029/2000JD000053

Aerosols, Cloud Microphysics, and Fractional Cloudiness
journal, September 1989


Predictions for particle deposition to vegetative canopies
journal, January 1982


Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations
journal, January 2006

  • Schulz, M.; Textor, C.; Kinne, S.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 12
  • DOI: 10.5194/acp-6-5225-2006

Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009)
journal, January 2010

  • van der Werf, G. R.; Randerson, J. T.; Giglio, L.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 23
  • DOI: 10.5194/acp-10-11707-2010

Description of Aerosol Dynamics by the Quadrature Method of Moments
journal, January 1997


Global indirect aerosol effects: a review
journal, January 2005


MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models
journal, January 2008

  • Bauer, S. E.; Wright, D. L.; Koch, D.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 20
  • DOI: 10.5194/acp-8-6003-2008

The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations
journal, January 2012

  • Zhang, K.; O'Donnell, D.; Kazil, J.
  • Atmospheric Chemistry and Physics Discussions, Vol. 12, Issue 3
  • DOI: 10.5194/acpd-12-7545-2012

Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1)
journal, January 2010

  • Pringle, K. J.; Tost, H.; Message, S.
  • Geoscientific Model Development, Vol. 3, Issue 2
  • DOI: 10.5194/gmd-3-391-2010

Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application
journal, January 2010

  • Lamarque, J. -F.; Bond, T. C.; Eyring, V.
  • Atmospheric Chemistry and Physics Discussions, Vol. 10, Issue 2
  • DOI: 10.5194/acpd-10-4963-2010

Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model
journal, January 2010

  • Mann, G. W.; Carslaw, K. S.; Spracklen, D. V.
  • Geoscientific Model Development, Vol. 3, Issue 2
  • DOI: 10.5194/gmd-3-519-2010

PC2: A prognostic cloud fraction and condensation scheme. II: Climate model simulations
journal, October 2008

  • Wilson, Damian R.; Bushell, Andrew. C.; Kerr-Munslow, Amanda M.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 134, Issue 637
  • DOI: 10.1002/qj.332

OH and halogen atom influence on the variability of non-methane hydrocarbons in the Antarctic Boundary Layer
journal, February 2007


Atmospheric turbidity, global illumination and planetary albedo of the earth
journal, January 1962


Black carbon semi-direct effects on cloud cover: review and synthesis
journal, January 2010


The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus
journal, April 2004

  • Johnson, B. T.; Shine, K. P.; Forster, P. M.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 130, Issue 599
  • DOI: 10.1256/qj.03.61

Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties
journal, October 2000

  • Chin, Mian; Rood, Richard B.; Lin, Shian-Jiann
  • Journal of Geophysical Research: Atmospheres, Vol. 105, Issue D20
  • DOI: 10.1029/2000JD900384

Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model
journal, January 2010

  • Mann, G. W.; Carslaw, K. S.; Spracklen, D. V.
  • Geoscientific Model Development Discussions, Vol. 3, Issue 2
  • DOI: 10.5194/gmdd-3-651-2010

Global inventory of sulfur emissions with 1°×1° resolution
journal, January 1992

  • Spiro, Peter A.; Jacob, Daniel J.; Logan, Jennifer A.
  • Journal of Geophysical Research, Vol. 97, Issue D5
  • DOI: 10.1029/91JD03139

Constraints on aerosol processes in climate models from vertically-resolved aircraft observations of black carbon
journal, January 2013

  • Kipling, Z.; Stier, P.; Schwarz, J. P.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 12
  • DOI: 10.5194/acp-13-5969-2013

Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results: AEROSOL PROFILES IN GLOBAL MODELS
journal, May 2012

  • Koffi, Brigitte; Schulz, Michael; Bréon, Francois-Marie
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D10
  • DOI: 10.1029/2011JD016858

Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system
posted_content, October 2010

  • Hewitt, H. T.; Copsey, D.; Culverwell, I. D.
  • Geoscientific Model Development Discussions
  • DOI: 10.5194/gmdd-3-1861-2010

Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth
journal, January 2014

  • van Noije, T. P. C.; Le Sager, P.; Segers, A. J.
  • Geoscientific Model Development, Vol. 7, Issue 5
  • DOI: 10.5194/gmd-7-2435-2014

Global indirect aerosol effects: a review
journal, January 2004

  • Lohmann, U.; Feichter, J.
  • Atmospheric Chemistry and Physics Discussions, Vol. 4, Issue 6
  • DOI: 10.5194/acpd-4-7561-2004

Global-scale black carbon profiles observed in the remote atmosphere and compared to models: HIPPO1 BLACK CARBON PROFILES
journal, September 2010

  • Schwarz, J. P.; Spackman, J. R.; Gao, R. S.
  • Geophysical Research Letters, Vol. 37, Issue 18
  • DOI: 10.1029/2010GL044372

Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model
journal, January 2005


Simulation of mineral dust aerosol with piecewise log-normal approximation (PLA) in CanAM4-PAM
posted_content, September 2011


The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei
journal, January 2013

  • Lee, L. A.; Pringle, K. J.; Reddington, C. L.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 17
  • DOI: 10.5194/acp-13-8879-2013

Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model
journal, August 2001

  • Woodward, S.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D16
  • DOI: 10.1029/2000JD900795

A size-segregated particle dry deposition scheme for an atmospheric aerosol module
journal, January 2001


Impact of carbonaceous aerosol emissions on regional climate change
journal, April 2006


Piecewise log-normal approximation of size distributions for aerosol modelling
journal, January 2006


A time-averaged inventory of subaerial volcanic sulfur emissions
journal, October 1998

  • Andres, R. J.; Kasgnoc, A. D.
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D19
  • DOI: 10.1029/98JD02091

A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month
journal, June 1999

  • Kettle, A. J.; Andreae, M. O.; Amouroux, D.
  • Global Biogeochemical Cycles, Vol. 13, Issue 2
  • DOI: 10.1029/1999GB900004

Anthropogenic radiative forcing time series from pre-industrial times until 2010
text, January 2011


Global impacts of aerosols from particular source regions and sectors
journal, January 2007

  • Koch, Dorothy; Bond, Tami C.; Streets, David
  • Journal of Geophysical Research, Vol. 112, Issue D2
  • DOI: 10.1029/2005JD007024

Radiative forcing and climate response
journal, March 1997

  • Hansen, J.; Sato, M.; Ruedy, R.
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D6
  • DOI: 10.1029/96JD03436

Uncertainties and importance of sea spray composition on aerosol direct and indirect effects: IMPORTANCE OF SEA-SPRAY COMPOSITION
journal, January 2013

  • Tsigaridis, Kostas; Koch, Dorothy; Menon, Surabi
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 1
  • DOI: 10.1029/2012JD018165

Technical Note: Description and assessment of a nudged version of the new dynamics Unified Model
journal, January 2008

  • Telford, P. J.; Braesicke, P.; Morgenstern, O.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 6
  • DOI: 10.5194/acp-8-1701-2008

Global indirect aerosol effects: a review
text, January 2005


Parameterizations for sulfuric acid/water nucleation rates
journal, April 1998

  • Kulmala, Markka; Laaksonen, Ari; Pirjola, Liisa
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D7
  • DOI: 10.1029/97JD03718

Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5
journal, January 2012

  • Liu, X.; Easter, R. C.; Ghan, S. J.
  • Geoscientific Model Development, Vol. 5, Issue 3
  • DOI: 10.5194/gmd-5-709-2012

The global 3-D distribution of tropospheric aerosols as characterized by CALIOP
journal, January 2013

  • Winker, D. M.; Tackett, J. L.; Getzewich, B. J.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 6
  • DOI: 10.5194/acp-13-3345-2013

Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
journal, January 2013

  • Myhre, G.; Samset, B. H.; Schulz, M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 4
  • DOI: 10.5194/acp-13-1853-2013

Historical and future black carbon deposition on the three ice caps: Ice core measurements and model simulations from 1850 to 2100: HISTORICAL AND FUTURE BC DEPOSITION
journal, July 2013

  • Bauer, Susanne E.; Bausch, Alexandra; Nazarenko, Larissa
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 14
  • DOI: 10.1002/jgrd.50612

Mapping the uncertainty in global CCN using emulation
journal, January 2012

  • Lee, L. A.; Carslaw, K. S.; Pringle, K. J.
  • Atmospheric Chemistry and Physics Discussions, Vol. 12, Issue 6
  • DOI: 10.5194/acpd-12-14089-2012

Evaluation of the new UKCA climate-composition model – Part 2: The Troposphere
journal, January 2014

  • O&apos;Connor, F. M.; Johnson, C. E.; Morgenstern, O.
  • Geoscientific Model Development, Vol. 7, Issue 1
  • DOI: 10.5194/gmd-7-41-2014

Vertical dependence of black carbon, sulphate and biomass burning aerosol radiative forcing: VERTICAL DEPENDENCE OF AEROSOL FORCING
journal, December 2011

  • Samset, Bjørn H.; Myhre, Gunnar
  • Geophysical Research Letters, Vol. 38, Issue 24
  • DOI: 10.1029/2011GL049697

The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations
journal, January 2012

  • Zhang, K.; O&apos;Donnell, D.; Kazil, J.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 19
  • DOI: 10.5194/acp-12-8911-2012

RCP 8.5—A scenario of comparatively high greenhouse gas emissions
journal, August 2011


OH and halogen atom influence on the variability of non-methane hydrocarbons in the Antarctic Boundary Layer
journal, January 2007


Aerosol–climate interactions in the Norwegian Earth System Model – NorESM1-M
journal, January 2013

  • Kirkevåg, A.; Iversen, T.; Seland, Ø.
  • Geoscientific Model Development, Vol. 6, Issue 1
  • DOI: 10.5194/gmd-6-207-2013

Mapping the uncertainty in global CCN using emulation
journal, January 2012

  • Lee, L. A.; Carslaw, K. S.; Pringle, K. J.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 20
  • DOI: 10.5194/acp-12-9739-2012

Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model
journal, January 2013

  • Bellouin, N.; Mann, G. W.; Woodhouse, M. T.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 6
  • DOI: 10.5194/acp-13-3027-2013

Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application
journal, January 2010

  • Lamarque, J. -F.; Bond, T. C.; Eyring, V.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 15
  • DOI: 10.5194/acp-10-7017-2010

The aerosol-climate model ECHAM5-HAM
journal, January 2005

  • Stier, P.; Feichter, J.; Kinne, S.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 4
  • DOI: 10.5194/acp-5-1125-2005

Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters
journal, January 2011

  • Lee, L. A.; Carslaw, K. S.; Pringle, K. J.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 23
  • DOI: 10.5194/acp-11-12253-2011

The ERA-Interim reanalysis: configuration and performance of the data assimilation system
journal, April 2011

  • Dee, D. P.; Uppala, S. M.; Simmons, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 656
  • DOI: 10.1002/qj.828

Analysis and quantification of the diversities of aerosol life cycles within AeroCom
journal, January 2006

  • Textor, C.; Schulz, M.; Guibert, S.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 7
  • DOI: 10.5194/acp-6-1777-2006

Global budget and radiative forcing of black carbon aerosol: Constraints from pole-to-pole (HIPPO) observations across the Pacific: GLOBAL BC BUDGET AND RADIATIVE FORCING
journal, January 2014

  • Wang, Qiaoqiao; Jacob, Daniel J.; Spackman, J. Ryan
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 1
  • DOI: 10.1002/2013JD020824

Spatial distributions of particle number concentrations in the global troposphere: Simulations, observations, and implications for nucleation mechanisms
journal, January 2010

  • Yu, Fangqun; Luo, Gan; Bates, Timothy S.
  • Journal of Geophysical Research, Vol. 115, Issue D17
  • DOI: 10.1029/2009JD013473

How much can the vertical distribution of black carbon affect its global direct radiative forcing?: HOW MUCH DO BC PROFILES AFFECT FORCING?
journal, October 2010

  • Zarzycki, Colin M.; Bond, Tami C.
  • Geophysical Research Letters, Vol. 37, Issue 20
  • DOI: 10.1029/2010GL044555

Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations
journal, January 2014


Implementation of the Fast-JX Photolysis scheme (v6.4) into the UKCA component of the MetUM chemistry-climate model (v7.3)
journal, January 2013

  • Telford, P. J.; Abraham, N. L.; Archibald, A. T.
  • Geoscientific Model Development, Vol. 6, Issue 1
  • DOI: 10.5194/gmd-6-161-2013

Black carbon vertical profiles strongly affect its radiative forcing uncertainty
journal, January 2013

  • Samset, B. H.; Myhre, G.; Schulz, M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 5
  • DOI: 10.5194/acp-13-2423-2013

Effects of absorbing aerosols in cloudy skies: a satellite study over the Atlantic Ocean
journal, January 2011


Anthropogenic radiative forcing time series from pre-industrial times until 2010
journal, January 2011

  • Skeie, R. B.; Berntsen, T. K.; Myhre, G.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 22
  • DOI: 10.5194/acp-11-11827-2011

Shortwave radiative forcing and efficiency of key aerosol types using AERONET data
posted_content, December 2011


A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties
journal, January 2005

  • Spracklen, D. V.; Pringle, K. J.; Carslaw, K. S.
  • Atmospheric Chemistry and Physics Discussions, Vol. 5, Issue 1
  • DOI: 10.5194/acpd-5-179-2005

Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom
journal, January 2006

  • Dentener, F.; Kinne, S.; Bond, T.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 12
  • DOI: 10.5194/acp-6-4321-2006

Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation
journal, January 2009

  • Myhre, G.; Berglen, T. F.; Johnsrud, M.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 4
  • DOI: 10.5194/acp-9-1365-2009

Direct and semi-direct radiative forcing of smoke aerosols over clouds
journal, January 2012


A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties
journal, January 2005

  • Spracklen, D. V.; Pringle, K. J.; Carslaw, K. S.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 8
  • DOI: 10.5194/acp-5-2227-2005

Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model
journal, January 2012

  • Bergman, T.; Kerminen, V. -M.; Korhonen, H.
  • Geoscientific Model Development, Vol. 5, Issue 3
  • DOI: 10.5194/gmd-5-845-2012

Shortwave radiative forcing and efficiency of key aerosol types using AERONET data
journal, January 2012

  • García, O. E.; Díaz, J. P.; Expósito, F. J.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 11
  • DOI: 10.5194/acp-12-5129-2012

Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme
journal, January 1995

  • Marticorena, B.; Bergametti, G.
  • Journal of Geophysical Research, Vol. 100, Issue D8
  • DOI: 10.1029/95JD00690

Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters
journal, January 2011

  • Lee, L. A.; Carslaw, K. S.; Pringle, K.
  • Atmospheric Chemistry and Physics Discussions, Vol. 11, Issue 7
  • DOI: 10.5194/acpd-11-20433-2011

Distributions and regional budgets of aerosols and their precursors simulated with the EMAC chemistry-climate model
journal, January 2012

  • Pozzer, A.; de Meij, A.; Pringle, K. J.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 2
  • DOI: 10.5194/acp-12-961-2012

A new dynamical core for the Met Office's global and regional modelling of the atmosphere
journal, April 2005

  • Davies, T.; Cullen, M. J. P.; Malcolm, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 131, Issue 608
  • DOI: 10.1256/qj.04.101

Mineral dust increases the habitability of terrestrial planets but confounds biomarker detection
journal, June 2020


Evaluation of the new UKCA climate-composition model – Part 2: The Troposphere
text, January 2014


A microphysically based precipitation scheme for the UK meteorological office unified model
journal, July 1999

  • Wilson, Damian R.; Ballard, Susan P.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 125, Issue 557
  • DOI: 10.1002/qj.49712555707

Atmospheric turbidity, global illumination and planetary albedo of the earth
journal, November 1962


Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system
journal, January 2011

  • Hewitt, H. T.; Copsey, D.; Culverwell, I. D.
  • Geoscientific Model Development, Vol. 4, Issue 2
  • DOI: 10.5194/gmd-4-223-2011

Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
journal, October 1998

  • Seinfeld, John H.; Pandis, Spyros N.; Noone, Kevin
  • Physics Today, Vol. 51, Issue 10
  • DOI: 10.1063/1.882420

Works referencing / citing this record:

The impact of precipitation evaporation on the atmospheric aerosol distribution in EC-Earth v3.2.0
journal, December 2017

  • de Bruine, Marco; Krol, Maarten; Noije, Twan van
  • Geoscientific Model Development Discussions
  • DOI: 10.5194/gmd-2017-259

Interrelations between surface, boundary layer, and columnar aerosol properties derived in summer and early autumn over a continental urban site in Warsaw, Poland
journal, January 2019

  • Wang, Dongxiang; Szczepanik, Dominika; Stachlewska, Iwona S.
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 20
  • DOI: 10.5194/acp-19-13097-2019

Estimating Source Region Influences on Black Carbon Abundance, Microphysics, and Radiative Effect Observed Over South Korea
journal, December 2018

  • Lamb, Kara D.; Perring, Anne E.; Samset, Bjørn
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 23
  • DOI: 10.1029/2018jd029257

Concentrations and radiative forcing of anthropogenic aerosols from 1750 to 2014 simulated with the Oslo CTM3 and CEDS emission inventory
journal, January 2018

  • Lund, Marianne Tronstad; Myhre, Gunnar; Haslerud, Amund Søvde
  • Geoscientific Model Development, Vol. 11, Issue 12
  • DOI: 10.5194/gmd-11-4909-2018

A production-tagged aerosol module for Earth system models, OsloAero5.3 – extensions and updates for CAM5.3-Oslo
journal, January 2018

  • Kirkevåg, Alf; Grini, Alf; Olivié, Dirk
  • Geoscientific Model Development, Vol. 11, Issue 10
  • DOI: 10.5194/gmd-11-3945-2018

Aerosols at the poles: an AeroCom Phase II multi-model evaluation
journal, January 2017

  • Sand, Maria; Samset, Bjørn H.; Balkanski, Yves
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 19
  • DOI: 10.5194/acp-17-12197-2017

Climate Feedback on Aerosol Emission and Atmospheric Concentrations
journal, January 2018


An agricultural biomass burning episode in eastern China: Transport, optical properties, and impacts on regional air quality
journal, February 2017

  • Wu, Yonghua; Han, Yong; Voulgarakis, Apostolos
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 4
  • DOI: 10.1002/2016jd025319

Interrelations between surface, boundary layer, and columnar aerosol properties derived in summer and early autumn over a continental urban site in Warsaw, Poland
journal, January 2019

  • Wang, Dongxiang; Szczepanik, Dominika; Stachlewska, Iwona S.
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 20
  • DOI: 10.5194/acp-19-13097-2019

Aerosols at the Poles: An AeroCom Phase II multi-model evaluation
posted_content, February 2017

  • Sand, Maria; Samset, Bjørn H.; Balkanski, Yves
  • Atmospheric Chemistry and Physics Discussions
  • DOI: 10.5194/acp-2016-1120

Aerosol and physical atmosphere model parameters are both important sources of uncertainty in aerosol ERF
journal, January 2018

  • Regayre, Leighton A.; Johnson, Jill S.; Yoshioka, Masaru
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 13
  • DOI: 10.5194/acp-18-9975-2018

The impact of precipitation evaporation on the atmospheric aerosol distribution in EC-Earth v3.2.0
journal, January 2018

  • de Bruine, Marco; Krol, Maarten; van Noije, Twan
  • Geoscientific Model Development, Vol. 11, Issue 4
  • DOI: 10.5194/gmd-11-1443-2018

In-situ constraints on the vertical distribution of global aerosol
posted_content, February 2019

  • Watson-Parris, Duncan; Schutgens, Nick; Reddington, Carly
  • Atmospheric Chemistry and Physics Discussions
  • DOI: 10.5194/acp-2018-1337

Global and regional radiative forcing from 20 % reductions in BC, OC and SO 4 – an HTAP2 multi-model study
journal, January 2016

  • Stjern, Camilla Weum; Samset, Bjørn Hallvard; Myhre, Gunnar
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 21
  • DOI: 10.5194/acp-16-13579-2016

Long-term profiling of aerosol light-extinction, particle mass, cloud condensation nuclei, and ice-nucleating particle concentration over Dushanbe, Tajikistan, in Central Asia
journal, December 2019

  • Hofer, Julian; Ansmann, Albert; Althausen, Dietrich
  • Atmospheric Chemistry and Physics Discussions
  • DOI: 10.5194/acp-2019-963

Aerosol characteristics at the three poles of the Earth as characterized by Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations
journal, March 2021

  • Yang, Yikun; Zhao, Chuanfeng; Wang, Quan
  • Atmospheric Chemistry and Physics, Vol. 21, Issue 6
  • DOI: 10.5194/acp-21-4849-2021

Multi-dimensional satellite observations of aerosol properties and aerosol types over three major urban clusters in eastern China
journal, August 2021


In situ constraints on the vertical distribution of global aerosol
journal, January 2019

  • Watson-Parris, Duncan; Schutgens, Nick; Reddington, Carly
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 18
  • DOI: 10.5194/acp-19-11765-2019

Concentrations and radiative forcing of anthropogenic aerosols from 1750 to 2014 simulated with the Oslo CTM3 and CEDS emission inventory
journal, January 2018

  • Lund, Marianne Tronstad; Myhre, Gunnar; Haslerud, Amund Søvde
  • Geoscientific Model Development, Vol. 11, Issue 12
  • DOI: 10.5194/gmd-11-4909-2018

Detecting layer height of smoke aerosols over vegetated land and water surfaces via oxygen absorption bands: hourly results from EPIC/DSCOVR in deep space
journal, January 2019


The impact of improved aerosol priors on near-infrared measurements of carbon dioxide
journal, January 2019

  • Nelson, Robert R.; O&apos;Dell, Christopher W.
  • Atmospheric Measurement Techniques, Vol. 12, Issue 3
  • DOI: 10.5194/amt-12-1495-2019

An assessment of aerosol optical properties from remote-sensing observations and regional chemistry–climate coupled models over Europe
journal, January 2018

  • Palacios-Peña, Laura; Baró, Rocío; Baklanov, Alexander
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 7
  • DOI: 10.5194/acp-18-5021-2018

Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes
journal, January 2019

  • Boy, Michael; Thomson, Erik S.; Acosta Navarro, Juan-C.
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 3
  • DOI: 10.5194/acp-19-2015-2019

Detecting layer height of smoke aerosols over vegetated land and water surfaces via oxygen absorption bands: hourly results from EPIC/DSCOVR in deep space
journal, January 2019


Observational constraint of in-cloud supersaturation for simulations of aerosol rainout in atmospheric models
journal, February 2019

  • Moteki, Nobuhiro; Mori, Tatsuhiro; Matsui, Hitoshi
  • npj Climate and Atmospheric Science, Vol. 2, Issue 1
  • DOI: 10.1038/s41612-019-0063-y

First validation of GOME-2/MetOp Absorbing Aerosol Height using EARLINET lidar observations
journal, July 2020

  • Michailidis, Konstantinos; Koukouli, Maria-Elissavet; Siomos, Nikolaos
  • Atmospheric Chemistry and Physics Discussions
  • DOI: 10.5194/acp-2020-601

Sensitivity of black carbon concentrations and climate impact to aging and scavenging in OsloCTM2–M7
journal, May 2017

  • Lund, Marianne T.; Berntsen, Terje K.; Samset, Bjørn H.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 9
  • DOI: 10.5194/acp-17-6003-2017

Spatial distribution analysis of the OMI aerosol layer height: a pixel-by-pixel comparison to CALIOP observations
posted_content, November 2017

  • Chimot, Julien; Veefkind, J. Pepijn; Vlemmix, Tim
  • Atmospheric Measurement Techniques Discussions
  • DOI: 10.5194/amt-2017-386

Spatial distribution analysis of the OMI aerosol layer height: a pixel-by-pixel comparison to CALIOP observations
journal, January 2018

  • Chimot, Julien; Veefkind, J. Pepijn; Vlemmix, Tim
  • Atmospheric Measurement Techniques, Vol. 11, Issue 4
  • DOI: 10.5194/amt-11-2257-2018

SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0
journal, January 2018

  • Kokkola, Harri; Kühn, Thomas; Laakso, Anton
  • Geoscientific Model Development, Vol. 11, Issue 9
  • DOI: 10.5194/gmd-11-3833-2018

Global aerosol simulations using NICAM.16 on a 14 km grid spacing for a climate study: improved and remaining issues relative to a lower-resolution model
journal, August 2020

  • Goto, Daisuke; Sato, Yousuke; Yashiro, Hisashi
  • Geoscientific Model Development, Vol. 13, Issue 8
  • DOI: 10.5194/gmd-13-3731-2020

How much of the global aerosol optical depth is found in the boundary layer and free troposphere?
journal, November 2017

  • Bourgeois, Quentin; Ekman, Annica M. L.; Renard, Jean-Baptiste
  • Atmospheric Chemistry and Physics Discussions
  • DOI: 10.5194/acp-2017-1058

Aerosols at the Poles: An AeroCom Phase II multi-model evaluation
posted_content, February 2017

  • Sand, Maria; Samset, Bjørn H.; Balkanski, Yves
  • Atmospheric Chemistry and Physics Discussions
  • DOI: 10.5194/acp-2016-1120

Spatial distribution analysis of the OMI aerosol layer height: a pixel-by-pixel comparison to CALIOP observations
journal, January 2018

  • Chimot, Julien; Veefkind, J. Pepijn; Vlemmix, Tim
  • Atmospheric Measurement Techniques, Vol. 11, Issue 4
  • DOI: 10.5194/amt-11-2257-2018

Aerosol vertical distribution and optical properties over China from long-term satellite and ground-based remote sensing
journal, January 2017

  • Tian, Pengfei; Cao, Xianjie; Zhang, Lei
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 4
  • DOI: 10.5194/acp-17-2509-2017

Effects of black carbon mitigation on Arctic climate
journal, May 2020

  • Kühn, Thomas; Kupiainen, Kaarle; Miinalainen, Tuuli
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 9
  • DOI: 10.5194/acp-20-5527-2020