skip to main content

DOE PAGESDOE PAGES

Title: Real-space observation of magnetic excitations and avalanche behavior in artificial quasicrystal lattices

Artificial spin ice lattices have emerged as model systems for studying magnetic frustration in recent years. Most work to date has looked at periodic artificial spin ice lattices. In this paper, we observe frustration effects in quasicrystal artificial spin ice lattices that lack translational symmetry and contain vertices with different numbers of interacting elements. We find that as the lattice state changes following demagnetizing and annealing, specific vertex motifs retain low-energy configurations, which excites other motifs into higher energy configurations. In addition, we find that unlike the magnetization reversal process for periodic artificial spin ice lattices, which occurs through 1D avalanches, quasicrystal lattices undergo reversal through a dendritic 2D avalanche mechanism.
Authors:
 [1] ;  [1] ;  [2] ;  [1]
  1. Argonne National Lab. (ANL), Lemont, IL (United States); Northwestern Univ., Evanston, IL (United States)
  2. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Grant/Contract Number:
AC02-06CH11357
Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences and Engineering Division
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; artificial spin ice; frustrated magnetism; quasicrystals
OSTI Identifier:
1335879