skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stability and self-passivation of copper vanadate photoanodes under chemical, electrochemical, and photoelectrochemical operation

Abstract

We discuss how deployment of solar fuels technology requires photoanodes and that long term stability, can be accomplished using light absorbers that self-passivate under operational conditions. We recently reported that several copper vanadates are promising photoanode materials, and their stability and self-passivation is demonstrated through a combination of Pourbaix calculations and combinatorial experimentation.

Authors:
 [1];  [2];  [3];  [1];  [1];  [1];  [1];  [1];  [4];  [5];  [1]
  1. California Inst. of Technology (CalTech), Pasadena, CA (United States). Joint Center for Artificial Photosynthesis (JCAP)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). Molecular Foundry; Univ. of California, Berkeley, CA (United States). Dept. of Physics
  3. Brookhaven National Lab. (BNL), Upton, NY (United States). Molecular Foundry; California Inst. of Technology (CalTech), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis (JCAP); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division
  4. Brookhaven National Lab. (BNL), Upton, NY (United States). Molecular Foundry; Univ. of California, Berkeley, CA (United States). Dept. of Physics; Kavli Energy Nanosciences Inst., Berkeley, CA (United States)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division
Publication Date:
Research Org.:
California Inst. of Technology (CalTech), Pasadena, CA (United States). Joint Center for Artificial Photosynthesis (JCAP); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1334192
Alternate Identifier(s):
OSTI ID: 1454462
Grant/Contract Number:  
SC0004993; AC02-76SF00515; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP (Print)
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP (Print); Journal Volume: 18; Journal Issue: 14; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY

Citation Formats

Zhou, Lan, Yan, Qimin, Yu, Jie, Jones, Ryan J. R., Becerra-Stasiewicz, Natalie, Suram, Santosh K., Shinde, Aniketa, Guevarra, Dan, Neaton, Jeffrey B., Persson, Kristin A., and Gregoire, John M. Stability and self-passivation of copper vanadate photoanodes under chemical, electrochemical, and photoelectrochemical operation. United States: N. p., 2016. Web. doi:10.1039/C6CP00473C.
Zhou, Lan, Yan, Qimin, Yu, Jie, Jones, Ryan J. R., Becerra-Stasiewicz, Natalie, Suram, Santosh K., Shinde, Aniketa, Guevarra, Dan, Neaton, Jeffrey B., Persson, Kristin A., & Gregoire, John M. Stability and self-passivation of copper vanadate photoanodes under chemical, electrochemical, and photoelectrochemical operation. United States. doi:10.1039/C6CP00473C.
Zhou, Lan, Yan, Qimin, Yu, Jie, Jones, Ryan J. R., Becerra-Stasiewicz, Natalie, Suram, Santosh K., Shinde, Aniketa, Guevarra, Dan, Neaton, Jeffrey B., Persson, Kristin A., and Gregoire, John M. Mon . "Stability and self-passivation of copper vanadate photoanodes under chemical, electrochemical, and photoelectrochemical operation". United States. doi:10.1039/C6CP00473C. https://www.osti.gov/servlets/purl/1334192.
@article{osti_1334192,
title = {Stability and self-passivation of copper vanadate photoanodes under chemical, electrochemical, and photoelectrochemical operation},
author = {Zhou, Lan and Yan, Qimin and Yu, Jie and Jones, Ryan J. R. and Becerra-Stasiewicz, Natalie and Suram, Santosh K. and Shinde, Aniketa and Guevarra, Dan and Neaton, Jeffrey B. and Persson, Kristin A. and Gregoire, John M.},
abstractNote = {We discuss how deployment of solar fuels technology requires photoanodes and that long term stability, can be accomplished using light absorbers that self-passivate under operational conditions. We recently reported that several copper vanadates are promising photoanode materials, and their stability and self-passivation is demonstrated through a combination of Pourbaix calculations and combinatorial experimentation.},
doi = {10.1039/C6CP00473C},
journal = {Physical Chemistry Chemical Physics. PCCP (Print)},
number = 14,
volume = 18,
place = {United States},
year = {2016},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Photoelectron spectroscopy study of oxygen vacancy on vanadium oxides surface
journal, September 2004


Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states
journal, June 2012


In situ identification and quantification in a flow cell with AAS downstream analytics
journal, October 2012

  • Voith, Michael; Luckeneder, Gerald; Hassel, Achim Walter
  • Journal of Solid State Electrochemistry, Vol. 16, Issue 11
  • DOI: 10.1007/s10008-012-1887-0

High Throughput Discovery of Solar Fuels Photoanodes in the CuO-V 2 O 5 System
journal, August 2015

  • Zhou, Lan; Yan, Qimin; Shinde, Aniketa
  • Advanced Energy Materials, Vol. 5, Issue 22
  • DOI: 10.1002/aenm.201500968

Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation
journal, May 2014


Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn
journal, November 2010


Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
journal, January 2013

  • Pinaud, Blaise A.; Benck, Jesse D.; Seitz, Linsey C.
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee40831k

Recent developments in solar water-splitting photocatalysis
journal, January 2011

  • Osterloh, Frank E.; Parkinson, Bruce A.
  • MRS Bulletin, Vol. 36, Issue 1
  • DOI: 10.1557/mrs.2010.5

An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
journal, January 2013

  • Hu, Shu; Xiang, Chengxiang; Haussener, Sophia
  • Energy & Environmental Science, Vol. 6, Issue 10
  • DOI: 10.1039/c3ee40453f

Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems
journal, January 2012

  • Haussener, Sophia; Xiang, Chengxiang; Spurgeon, Joshua M.
  • Energy & Environmental Science, Vol. 5, Issue 12
  • DOI: 10.1039/c2ee23187e

Progress in bismuth vanadate photoanodes for use in solar water oxidation
journal, January 2013

  • Park, Yiseul; McDonald, Kenneth J.; Choi, Kyoung-Shin
  • Chem. Soc. Rev., Vol. 42, Issue 6, p. 2321-2337
  • DOI: 10.1039/C2CS35260E

Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators
journal, October 2015

  • Hu, Shu; Lewis, Nathan S.; Ager, Joel W.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 43
  • DOI: 10.1021/acs.jpcc.5b05976

Inorganic Materials as Catalysts for Photochemical Splitting of Water
journal, January 2008


All First Row Transition Metal Oxide Photoanode for Water Splitting Based on Cu 3 V 2 O 8
journal, January 2015

  • Seabold, Jason A.; Neale, Nathan R.
  • Chemistry of Materials, Vol. 27, Issue 3
  • DOI: 10.1021/cm504327f

Coupling of a scanning flow cell with online electrochemical mass spectrometry for screening of reaction selectivity
journal, October 2014

  • Grote, Jan-Philipp; Zeradjanin, Aleksandar R.; Cherevko, Serhiy
  • Review of Scientific Instruments, Vol. 85, Issue 10
  • DOI: 10.1063/1.4896755

Visible-light driven heterojunction photocatalysts for water splitting – a critical review
journal, January 2015

  • Moniz, Savio J. A.; Shevlin, Stephen A.; Martin, David James
  • Energy & Environmental Science, Vol. 8, Issue 3
  • DOI: 10.1039/C4EE03271C

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Oxygen Vacancy: The Invisible Agent on Oxide Surfaces
journal, October 2003


Reduction mechanisms of the CuO(111) surface through surface oxygen vacancy formation and hydrogen adsorption
journal, January 2014

  • Maimaiti, Yasheng; Nolan, Michael; Elliott, Simon D.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 7
  • DOI: 10.1039/c3cp53991a

Conductivity and Microstructure of Combinatorially Sputter-Deposited Ta–Ti–Al Nitride Thin Films
journal, June 2015

  • O’Dea, James R.; Holtz, Megan E.; Legard, Anna E.
  • Chemistry of Materials, Vol. 27, Issue 13
  • DOI: 10.1021/cm504599s