DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density

Abstract

The stability and kinetics of the Li–Li7La3Zr2O12 (LLZO) interface were characterized as a function of temperature and current density. Polycrystalline LLZO was densified using a rapid hot-pressing technique achieving 97 ± 1% relative density, and <10% grain boundary resistance; effectively consisting of an ensemble of single LLZO crystals. It was determined that by heating to 175 °C, the room temperature Li-LLZO interface resistance decreases dramatically from 5822 (as-assembled) to 514 Ω cm2; a > 10-fold decrease. In characterizing the maximum sustainable current density (or critical current density – CCD) of the Li-LLZO interface, several signs of degradation were observed. In DC cycling tests, significant deviation from Ohmic behavior was observed. In post-cycling tests, regions of metallic Li were observed; propagating parallel to the ionic current. For the cells cycled at 30, 70, 100, 130 and 160 °C, the CCD was determined to be 50, 200, 800, 3500, and 20000 μA cm–2, respectively. As a result, the relationships and phenomena observed in this work can be used to better understand the Li-LLZO interface stability, enabling the use of batteries employing Li metal anodes.

Authors:
 [1];  [2];  [2];  [3];  [1]
  1. Univ. of Michigan, Ann Arbor, MI (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. RDRL-SED-C Army Research Lab., Adelphi, MD (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1327687
Alternate Identifier(s):
OSTI ID: 1359451
Grant/Contract Number:  
AC05-00OR22725; AR0000399; EE-00006821
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Power Sources
Additional Journal Information:
Journal Volume: 302; Journal Issue: C; Journal ID: ISSN 0378-7753
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; solid state electrolyte; Li; current density; charge transfer

Citation Formats

Sharafi, Asma, Meyer, Harry M., Nanda, Jagjit, Wolfenstine, Jeff, and Sakamoto, Jeff. Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. United States: N. p., 2015. Web. doi:10.1016/j.jpowsour.2015.10.053.
Sharafi, Asma, Meyer, Harry M., Nanda, Jagjit, Wolfenstine, Jeff, & Sakamoto, Jeff. Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. United States. https://doi.org/10.1016/j.jpowsour.2015.10.053
Sharafi, Asma, Meyer, Harry M., Nanda, Jagjit, Wolfenstine, Jeff, and Sakamoto, Jeff. Tue . "Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density". United States. https://doi.org/10.1016/j.jpowsour.2015.10.053. https://www.osti.gov/servlets/purl/1327687.
@article{osti_1327687,
title = {Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density},
author = {Sharafi, Asma and Meyer, Harry M. and Nanda, Jagjit and Wolfenstine, Jeff and Sakamoto, Jeff},
abstractNote = {The stability and kinetics of the Li–Li7La3Zr2O12 (LLZO) interface were characterized as a function of temperature and current density. Polycrystalline LLZO was densified using a rapid hot-pressing technique achieving 97 ± 1% relative density, and <10% grain boundary resistance; effectively consisting of an ensemble of single LLZO crystals. It was determined that by heating to 175 °C, the room temperature Li-LLZO interface resistance decreases dramatically from 5822 (as-assembled) to 514 Ω cm2; a > 10-fold decrease. In characterizing the maximum sustainable current density (or critical current density – CCD) of the Li-LLZO interface, several signs of degradation were observed. In DC cycling tests, significant deviation from Ohmic behavior was observed. In post-cycling tests, regions of metallic Li were observed; propagating parallel to the ionic current. For the cells cycled at 30, 70, 100, 130 and 160 °C, the CCD was determined to be 50, 200, 800, 3500, and 20000 μA cm–2, respectively. As a result, the relationships and phenomena observed in this work can be used to better understand the Li-LLZO interface stability, enabling the use of batteries employing Li metal anodes.},
doi = {10.1016/j.jpowsour.2015.10.053},
journal = {Journal of Power Sources},
number = C,
volume = 302,
place = {United States},
year = {Tue Oct 27 00:00:00 EDT 2015},
month = {Tue Oct 27 00:00:00 EDT 2015}
}

Journal Article:

Citation Metrics:
Cited by: 357 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature
journal, April 2013


The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
journal, January 2005

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1850854

Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet
journal, July 2012

  • Ni, Jennifer E.; Case, Eldon D.; Sakamoto, Jeffrey S.
  • Journal of Materials Science, Vol. 47, Issue 23, p. 7978-7985
  • DOI: 10.1007/s10853-012-6687-5

Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte
journal, March 2012


Fabrication of Three-Dimensional Battery Using Ceramic Electrolyte with Honeycomb Structure by Sol–Gel Process
journal, January 2010

  • Kotobuki, Masashi; Suzuki, Yuji; Munakata, Hirokazu
  • Journal of The Electrochemical Society, Vol. 157, Issue 4
  • DOI: 10.1149/1.3308459

Stability of Nb-Doped Cubic Li 7 La 3 Zr 2 O 12 with Lithium Metal
journal, January 2013

  • Ishiguro, K.; Nakata, Y.; Matsui, M.
  • Journal of The Electrochemical Society, Vol. 160, Issue 10
  • DOI: 10.1149/2.036310jes

Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte
journal, August 2015


Wetting characteristics of sodium on ??-alumina and on nasicon
journal, March 1982

  • Viswanathan, L.; Virkar, A. V.
  • Journal of Materials Science, Vol. 17, Issue 3
  • DOI: 10.1007/BF00540372

The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12
journal, January 2012

  • Rangasamy, Ezhiyl; Wolfenstine, Jeff; Sakamoto, Jeffrey
  • Solid State Ionics, Vol. 206, p. 28-32
  • DOI: 10.1016/j.ssi.2011.10.022

Microstructure and Li-Ion Conductivity of Hot-Pressed Cubic Li 7 La 3 Zr 2 O 12
journal, January 2015

  • David, Isabel N.; Thompson, Travis; Wolfenstine, Jeff
  • Journal of the American Ceramic Society, Vol. 98, Issue 4
  • DOI: 10.1111/jace.13455

Resolving the Grain Boundary and Lattice Impedance of Hot-Pressed Li 7 La 3 Zr 2 O 12 Garnet Electrolytes
journal, July 2013

  • Tenhaeff, Wyatt E.; Rangasamy, Ezhiyl; Wang, Yangyang
  • ChemElectroChem, Vol. 1, Issue 2
  • DOI: 10.1002/celc.201300022

Electroceramics: Characterization by Impedance Spectroscopy
journal, March 1990

  • Irvine, John T. S.; Sinclair, Derek C.; West, Anthony R.
  • Advanced Materials, Vol. 2, Issue 3
  • DOI: 10.1002/adma.19900020304

High lithium ionic conductivity in the garnet-type oxide Li7−XLa3(Zr2−X, NbX)O12 (X=0–2)
journal, March 2011


The low temperature performance of Li-ion batteries
journal, March 2003


Works referencing / citing this record:

Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries
journal, January 2019

  • Lian, Peng-Jie; Zhao, Bo-Sheng; Zhang, Lian-Qi
  • Journal of Materials Chemistry A, Vol. 7, Issue 36
  • DOI: 10.1039/c9ta04555d

Impact of air exposure and surface chemistry on Li–Li 7 La 3 Zr 2 O 12 interfacial resistance
journal, January 2017

  • Sharafi, Asma; Yu, Seungho; Naguib, Michael
  • Journal of Materials Chemistry A, Vol. 5, Issue 26
  • DOI: 10.1039/c7ta03162a

Recent Progress in All-Solid-State Lithium−Sulfur Batteries Using High Li-Ion Conductive Solid Electrolytes
journal, February 2019


Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries
journal, January 2017

  • Kerman, Kian; Luntz, Alan; Viswanathan, Venkatasubramanian
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1571707jes

Oriented porous LLZO 3D structures obtained by freeze casting for battery applications
journal, January 2019

  • Shen, Hao; Yi, Eongyu; Amores, Marco
  • Journal of Materials Chemistry A, Vol. 7, Issue 36
  • DOI: 10.1039/c9ta06520b

Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes
journal, January 2017

  • Chen, Kuan-Hung; Wood, Kevin N.; Kazyak, Eric
  • Journal of Materials Chemistry A, Vol. 5, Issue 23
  • DOI: 10.1039/c7ta00371d

Impact of External Pressure and Electrolyte Transport Properties on Lithium Dendrite Growth
journal, January 2018

  • Barai, Pallab; Higa, Kenneth; Srinivasan, Venkat
  • Journal of The Electrochemical Society, Vol. 165, Issue 11
  • DOI: 10.1149/2.0651811jes

Graphitic Carbon Nitride (g‐C 3 N 4 ): An Interface Enabler for Solid‐State Lithium Metal Batteries
journal, January 2020


Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
journal, December 2017


Designing solid-state electrolytes for safe, energy-dense batteries
journal, February 2020


3D-Printing Electrolytes for Solid-State Batteries
journal, March 2018

  • McOwen, Dennis W.; Xu, Shaomao; Gong, Yunhui
  • Advanced Materials, Vol. 30, Issue 18
  • DOI: 10.1002/adma.201707132

A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries
journal, March 2019


Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

Progress of the Interface Design in All-Solid-State Li-S Batteries
journal, March 2018

  • Yue, Junpei; Yan, Min; Yin, Ya-Xia
  • Advanced Functional Materials, Vol. 28, Issue 38
  • DOI: 10.1002/adfm.201707533

Lithium Mechanics: Roles of Strain Rate and Temperature and Implications for Lithium Metal Batteries
journal, January 2019

  • LePage, William S.; Chen, Yuxin; Kazyak, Eric
  • Journal of The Electrochemical Society, Vol. 166, Issue 2
  • DOI: 10.1149/2.0221902jes

Universal Soldering of Lithium and Sodium Alloys on Various Substrates for Batteries
journal, October 2017


Elastic, plastic, and creep mechanical properties of lithium metal
journal, October 2018

  • Masias, Alvaro; Felten, Nando; Garcia-Mendez, Regina
  • Journal of Materials Science, Vol. 54, Issue 3
  • DOI: 10.1007/s10853-018-2971-3

In Situ Transmission Electron Microscopy for Energy Materials and Devices
journal, June 2019

  • Fan, Zheng; Zhang, Liqiang; Baumann, Daniel
  • Advanced Materials, Vol. 31, Issue 33
  • DOI: 10.1002/adma.201900608

Lithium Dendrite Growth Suppression and Ionic Conductivity of Li 2 S-P 2 S 5 -P 2 O 5  Glass Solid Electrolytes Prepared by Mechanical Milling
journal, January 2019

  • Cengiz, Mazlum; Oh, Hyukkeun; Lee, Se-Hee
  • Journal of The Electrochemical Society, Vol. 166, Issue 16
  • DOI: 10.1149/2.0311916jes

Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries
journal, January 2018

  • He, Minghui; Cui, Zhonghui; Chen, Cheng
  • Journal of Materials Chemistry A, Vol. 6, Issue 24
  • DOI: 10.1039/c8ta02276c

Mechanical Stress Induced Current Focusing and Fracture in Grain Boundaries
journal, January 2019

  • Barai, Pallab; Higa, Kenneth; Ngo, Anh T.
  • Journal of The Electrochemical Society, Vol. 166, Issue 10
  • DOI: 10.1149/2.0321910jes

Solid-state electrolyte considerations for electric vehicle batteries
journal, January 2019

  • Shen, Hao; Yi, Eongyu; Cheng, Lei
  • Sustainable Energy & Fuels, Vol. 3, Issue 7
  • DOI: 10.1039/c9se00119k

Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes
journal, July 2017

  • Porz, Lukas; Swamy, Tushar; Sheldon, Brian W.
  • Advanced Energy Materials, Vol. 7, Issue 20
  • DOI: 10.1002/aenm.201701003

Dense freeze-cast Li 7 La 3 Zr 2 O 12 solid electrolytes with oriented open porosity and contiguous ceramic scaffold
journal, August 2018

  • Buannic, Lucienne; Naviroj, Maninpat; Miller, Sarah M.
  • Journal of the American Ceramic Society, Vol. 102, Issue 3
  • DOI: 10.1111/jace.15938

Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li 7 La 3 Zr 2 O 12 solid-state electrolyte
journal, January 2017

  • Sharafi, Asma; Haslam, Catherine G.; Kerns, Robert D.
  • J. Mater. Chem. A, Vol. 5, Issue 40
  • DOI: 10.1039/c7ta06790a

In situ formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte
journal, January 2019

  • Fu, Jiamin; Yu, Pengfei; Zhang, Nian
  • Energy & Environmental Science, Vol. 12, Issue 4
  • DOI: 10.1039/c8ee03390k

Recent Developments of the Lithium Metal Anode for Rechargeable Non-Aqueous Batteries
journal, July 2016

  • Zhang, Kai; Lee, Gi-Hyeok; Park, Mihui
  • Advanced Energy Materials, Vol. 6, Issue 20
  • DOI: 10.1002/aenm.201600811

Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries
journal, February 2018


Dopant‐Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal
journal, January 2019

  • Zhu, Yisi; Connell, Justin G.; Tepavcevic, Sanja
  • Advanced Energy Materials, Vol. 9, Issue 12
  • DOI: 10.1002/aenm.201803440

Dendrite nucleation in lithium-conductive ceramics
journal, January 2019

  • Li, Guanchen; Monroe, Charles W.
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 36
  • DOI: 10.1039/c9cp03884a

Lithium Metal Penetration Induced by Electrodeposition through Solid Electrolytes: Example in Single-Crystal Li 6 La 3 ZrTaO 12 Garnet
journal, January 2018

  • Swamy, Tushar; Park, Richard; Sheldon, Brian W.
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.1391814jes

Formation and Stability of Interface between Garnet-Type Ta-doped Li7La3Zr2O12 Solid Electrolyte and Lithium Metal Electrode
journal, June 2018


Design Principles of the Anode–Electrolyte Interface for All Solid‐State Lithium Metal Batteries
journal, October 2019


High cathode utilization efficiency through interface engineering in all-solid-state lithium-metal batteries
journal, January 2019

  • Guo, Xianwei; Hao, Liangwei; Yang, Yubo
  • Journal of Materials Chemistry A, Vol. 7, Issue 45
  • DOI: 10.1039/c9ta09935b

Elucidating the role of dopants in the critical current density for dendrite formation in garnet electrolytes
journal, January 2018

  • Pesci, Federico M.; Brugge, Rowena H.; Hekselman, A. K. Ola
  • Journal of Materials Chemistry A, Vol. 6, Issue 40
  • DOI: 10.1039/c8ta08366e

How Metallic Protection Layers Extend the Lifetime of NASICON-Based Solid-State Lithium Batteries
journal, October 2019

  • Cortes, Francisco Javier Quintero; Lewis, John A.; Tippens, Jared
  • Journal of The Electrochemical Society, Vol. 167, Issue 5
  • DOI: 10.1149/2.0032005jes

Inside or Outside: Origin of Lithium Dendrite Formation of All Solid‐State Electrolytes
journal, September 2019

  • Mo, Fangjie; Ruan, Jiafeng; Sun, Shuxian
  • Advanced Energy Materials, Vol. 9, Issue 40
  • DOI: 10.1002/aenm.201902123

High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes
journal, January 2019


Evaluating the Effects of Temperature and Pressure on Li/PEO-LiTFSI Interfacial Stability and Kinetics
journal, January 2018

  • Gupta, A.; Kazyak, E.; Craig, N.
  • Journal of The Electrochemical Society, Vol. 165, Issue 11
  • DOI: 10.1149/2.0901811jes

Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling
journal, December 2019

  • Zheng, Hongpeng; Wu, Shaoping; Tian, Ran
  • Advanced Functional Materials, Vol. 30, Issue 6
  • DOI: 10.1002/adfm.201906189

Suppressing Li Dendrite Formation in Li 2 S-P 2 S 5 Solid Electrolyte by LiI Incorporation
journal, March 2018

  • Han, Fudong; Yue, Jie; Zhu, Xiangyang
  • Advanced Energy Materials, Vol. 8, Issue 18
  • DOI: 10.1002/aenm.201703644

Will the competitive future of solid state Li metal batteries rely on a ceramic or a composite electrolyte?
journal, January 2018

  • Gutiérrez-Pardo, Antonio; Pitillas Martinez, Andrea I.; Otaegui, Laida
  • Sustainable Energy & Fuels, Vol. 2, Issue 10
  • DOI: 10.1039/c8se00273h

The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries
journal, January 2018

  • Wu, Bingbin; Wang, Shanyu; Lochala, Joshua
  • Energy & Environmental Science, Vol. 11, Issue 7
  • DOI: 10.1039/c8ee00540k

Graphitic Carbon Nitride (g‐C 3 N 4 ): An Interface Enabler for Solid‐State Lithium Metal Batteries
journal, January 2020

  • Huang, Ying; Chen, Bo; Duan, Jian
  • Angewandte Chemie International Edition, Vol. 59, Issue 9
  • DOI: 10.1002/anie.201914417

The activation entropy for ionic conduction and critical current density for Li charge transfer in novel garnet-type Li 6.5 La 2.9 A 0.1 Zr 1.4 Ta 0.6 O 12 (A = Ca, Sr, Ba) solid electrolytes
journal, January 2020

  • Palakkathodi Kammampata, Sanoop; Yamada, Hirotoshi; Ito, Tomoko
  • Journal of Materials Chemistry A, Vol. 8, Issue 5
  • DOI: 10.1039/c9ta12193e

Revealing the Short‐Circuiting Mechanism of Garnet‐Based Solid‐State Electrolyte
journal, April 2019

  • Song, Yongli; Yang, Luyi; Zhao, Wenguang
  • Advanced Energy Materials, Vol. 9, Issue 21
  • DOI: 10.1002/aenm.201900671

Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer
journal, April 2017


Free-standing transition metal oxide electrode architectures for electrochemical energy storage
journal, July 2019


Sodium Plating from Na‐β″‐Alumina Ceramics at Room Temperature, Paving the Way for Fast‐Charging All‐Solid‐State Batteries
journal, December 2019

  • Bay, Marie‐Claude; Wang, Michael; Grissa, Rabeb
  • Advanced Energy Materials, Vol. 10, Issue 3
  • DOI: 10.1002/aenm.201902899

Dense, Melt Cast Sulfide Glass Electrolyte Separators for Li Metal Batteries
journal, January 2019

  • Yersak, Thomas A.; Salvador, James R.; Pieczonka, Nicholas P. W.
  • Journal of The Electrochemical Society, Vol. 166, Issue 8
  • DOI: 10.1149/2.0841908jes

7Li NMR Chemical Shift Imaging To Detect Microstructural Growth of Lithium in All-Solid-State Batteries.
journalarticle, January 2019

  • Marbella, Lauren E.; Zekoll, Stefanie; Kasemchainan, Jitti
  • American Chemical Society (ACS)
  • DOI: 10.17863/cam.38208

Electrochemical Stability of Li6.5La3Zr1.5M0.5O12 (M = Nb or Ta) against Metallic Lithium
journal, May 2016