DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries

Abstract

In Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the large-scale application and the poor electrolyte stability that forbids the use of high-voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. We show that the largely overlooked mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li0.33La0.56)TiO3, a mesoscopic framework is revealed for the first time by state-of-the-art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. Finally, this discovery reconciles the long-standing structure–property inconsistency in (Li0.33La0.56)TiO3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li+ conduction.

Authors:
 [1];  [2];  [3];  [4];  [5];  [3];  [1];  [4];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division
  3. Tsinghua Univ., Beijing (China). School of Materials Science and Engineering
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences and Computer Science and Mathematics Division
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1326475
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 6; Journal Issue: 11; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Ma, Cheng, Cheng, Yongqiang, Chen, Kai, Li, Juchuan, Sumpter, Bobby G., Nan, Ce-Wen, More, Karren L., Dudney, Nancy J., and Chi, Miaofang. Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries. United States: N. p., 2016. Web. doi:10.1002/aenm.201600053.
Ma, Cheng, Cheng, Yongqiang, Chen, Kai, Li, Juchuan, Sumpter, Bobby G., Nan, Ce-Wen, More, Karren L., Dudney, Nancy J., & Chi, Miaofang. Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries. United States. https://doi.org/10.1002/aenm.201600053
Ma, Cheng, Cheng, Yongqiang, Chen, Kai, Li, Juchuan, Sumpter, Bobby G., Nan, Ce-Wen, More, Karren L., Dudney, Nancy J., and Chi, Miaofang. Tue . "Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries". United States. https://doi.org/10.1002/aenm.201600053. https://www.osti.gov/servlets/purl/1326475.
@article{osti_1326475,
title = {Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries},
author = {Ma, Cheng and Cheng, Yongqiang and Chen, Kai and Li, Juchuan and Sumpter, Bobby G. and Nan, Ce-Wen and More, Karren L. and Dudney, Nancy J. and Chi, Miaofang},
abstractNote = {In Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the large-scale application and the poor electrolyte stability that forbids the use of high-voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. We show that the largely overlooked mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li0.33La0.56)TiO3, a mesoscopic framework is revealed for the first time by state-of-the-art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. Finally, this discovery reconciles the long-standing structure–property inconsistency in (Li0.33La0.56)TiO3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li+ conduction.},
doi = {10.1002/aenm.201600053},
journal = {Advanced Energy Materials},
number = 11,
volume = 6,
place = {United States},
year = {Tue Mar 29 00:00:00 EDT 2016},
month = {Tue Mar 29 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 39 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electron energy-loss spectroscopy in the TEM
journal, December 2008


Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes
journal, January 2014

  • Ma, Cheng; Chen, Kai; Liang, Chengdu
  • Energy & Environmental Science, Vol. 7, Issue 5
  • DOI: 10.1039/c4ee00382a

Ab initio determination of solid-state nanostructure
journal, March 2006

  • Juhás, P.; Cherba, D. M.; Duxbury, P. M.
  • Nature, Vol. 440, Issue 7084
  • DOI: 10.1038/nature04556

Tetragonal superstructure and thermal history of Li0.3La0.567TiO3 (LLTO) solid electrolyte by neutron diffraction
journal, January 2007

  • Catti, Michele; Sommariva, Marco; Ibberson, Richard M.
  • Journal of Materials Chemistry, Vol. 17, Issue 13
  • DOI: 10.1039/b614345h

Design principles for solid-state lithium superionic conductors
journal, August 2015

  • Wang, Yan; Richards, William Davidson; Ong, Shyue Ping
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4369

Order–Disorder Enhanced Oxygen Conductivity and Electron Transport in Ruddlesden–Popper Ferrite-Titanate Sr3Fe2−xTixO6+δ
journal, October 2002

  • Shilova, Y. A.; Patrakeev, M. V.; Mitberg, E. B.
  • Journal of Solid State Chemistry, Vol. 168, Issue 1
  • DOI: 10.1006/jssc.2002.9722

Influence of Quenching Treatments on Structure and Conductivity of the Li 3 x La 2/3- x TiO 3 Series
journal, January 2003

  • Várez, A.; Ibarra, J.; Rivera, A.
  • Chemistry of Materials, Vol. 15, Issue 1
  • DOI: 10.1021/cm020172q

Structural investigations of migration pathways in lithium ion-conducting La2/3−xLi3xTiO3 perovskites
journal, November 2006


Beyond the Structure–Property Relationship Paradigm: Influence of the Crystal Structure and Microstructure on the Li+ Conductivity of La2/3LixTi1−xAlxO3 Oxides
journal, June 2007

  • García-Martín, Susana; Morata-Orrantía, Ainhoa; Alario-Franco, Miguel A.
  • Chemistry - A European Journal, Vol. 13, Issue 19
  • DOI: 10.1002/chem.200700235

The Problem with Determining Atomic Structure at the Nanoscale
journal, April 2007


The fast lithium-ion conducting oxides Li3xLa2/3−xTiO3 from fundamentals to application
journal, March 2008


Lithium Atom and A-Site Vacancy Distributions in Lanthanum Lithium Titanate
journal, April 2013

  • Gao, Xiang; Fisher, Craig A. J.; Kimura, Teiichi
  • Chemistry of Materials, Vol. 25, Issue 9
  • DOI: 10.1021/cm3041357

Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li + /H + Exchange in Aqueous Solutions
journal, October 2014

  • Ma, Cheng; Rangasamy, Ezhiylmurugan; Liang, Chengdu
  • Angewandte Chemie, Vol. 127, Issue 1
  • DOI: 10.1002/ange.201408124

An integrated approach for structural characterization of complex solid state electrolytes: the case of lithium lanthanum titanate
journal, January 2014

  • Cheng, Y. Q.; Bi, Z. H.; Huq, A.
  • Journal of Materials Chemistry A, Vol. 2, Issue 7
  • DOI: 10.1039/c3ta14433j

Progress and prospective of solid-state lithium batteries
journal, February 2013


Structural and Microstructural Studies of the Series La2/3−xLi3x□1/3−2xTiO3
journal, December 1996

  • Fourquet, J. L.; Duroy, H.; Crosnier-Lopez, M. P.
  • Journal of Solid State Chemistry, Vol. 127, Issue 2
  • DOI: 10.1006/jssc.1996.0385

Crystal Structure and Microstructure of Some La 2/ 3 - x Li 3 x TiO 3 Oxides:  An Example of the Complementary Use of Electron Diffraction and Microscopy and Synchrotron X-ray Diffraction To Study Complex Materials
journal, March 2004

  • García-Martín, Susana; Alario-Franco, Miguel A.; Ehrenberg, Helmut
  • Journal of the American Chemical Society, Vol. 126, Issue 11
  • DOI: 10.1021/ja038410l

Effect of average and local structures on lithium ion conductivity in La2/3−xLi3xTiO3
journal, January 2011

  • Okumura, Toyoki; Ina, Toshiaki; Orikasa, Yuki
  • Journal of Materials Chemistry, Vol. 21, Issue 27
  • DOI: 10.1039/c0jm04372a

Advanced analytical electron microscopy for lithium-ion batteries
journal, June 2015

  • Qian, Danna; Ma, Cheng; More, Karren L.
  • NPG Asia Materials, Vol. 7, Issue 6
  • DOI: 10.1038/am.2015.50

Two Dimensional Li Diffusion in Ion-Conductive Lithium Lanthanum Titanates
journal, January 2013


Neutron Diffraction Study of Quenched Li 0.3 La 0.567 TiO 3 Lithium Ion Conducting Perovskite
journal, May 2006

  • Sommariva, Marco; Catti, Michele
  • Chemistry of Materials, Vol. 18, Issue 9
  • DOI: 10.1021/cm060120r

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Z-Contrast Transmission Electron Microscopy: Direct Atomic Imaging of Materials
journal, August 1992


Microstructural analysis of La2/3−xLi3xTiO3 single crystals and quenched samples observed by high resolution transmission electron microscopy
journal, May 2009

  • Tsurui, Takao; Katsumata, Tetsuhiro; Inaguma, Yoshiyuki
  • Solid State Ionics, Vol. 180, Issue 6-8
  • DOI: 10.1016/j.ssi.2008.10.023

Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives
journal, January 2011

  • Quartarone, Eliana; Mustarelli, Piercarlo
  • Chemical Society Reviews, Vol. 40, Issue 5
  • DOI: 10.1039/c0cs00081g

Lithium Lanthanum Titanates:  A Review
journal, October 2003

  • Stramare, S.; Thangadurai, V.; Weppner, W.
  • Chemistry of Materials, Vol. 15, Issue 21
  • DOI: 10.1021/cm0300516

Superionics: crystal structures and conduction processes
journal, June 2004


Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li + /H + Exchange in Aqueous Solutions
journal, October 2014

  • Ma, Cheng; Rangasamy, Ezhiylmurugan; Liang, Chengdu
  • Angewandte Chemie International Edition, Vol. 54, Issue 1
  • DOI: 10.1002/anie.201408124

Lithium NMR Study on Li-Ion Conducting A-Site Deficient Perovskites
journal, May 2000


Genetics of superionic conductivity in lithium lanthanum titanates
journal, January 2015

  • Jay, E. E.; Rushton, M. J. D.; Chroneos, A.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 1
  • DOI: 10.1039/C4CP04834B

Lithium Lanthanum Titanates: A Review
journal, December 2003


Ab initio Determination of Solid-State Nanostructure.
journal, June 2006


Works referencing / citing this record:

Designing Safe Electrolyte Systems for a High-Stability Lithium-Sulfur Battery
journal, January 2018

  • Chen, Wei; Lei, Tianyu; Wu, Chunyang
  • Advanced Energy Materials, Vol. 8, Issue 10
  • DOI: 10.1002/aenm.201702348

Pyridinic Nitrogen-Enriched Carbon Nanogears with Thin Teeth for Superior Lithium Storage
journal, June 2016


Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries
journal, September 2018

  • Asano, Tetsuya; Sakai, Akihiro; Ouchi, Satoru
  • Advanced Materials, Vol. 30, Issue 44
  • DOI: 10.1002/adma.201803075

Recent Progress in Lithium Lanthanum Titanate Electrolyte towards All Solid-State Lithium Ion Secondary Battery
journal, September 2018

  • Sun, Yuandong; Guan, Peiyuan; Liu, Yunjian
  • Critical Reviews in Solid State and Materials Sciences, Vol. 44, Issue 4
  • DOI: 10.1080/10408436.2018.1485551

Novel Solid Electrolytes for Li-Ion Batteries: A Perspective from Electron Microscopy Studies
journal, June 2016