skip to main content

DOE PAGESDOE PAGES

Title: Spin liquid state in the disordered triangular lattice Sc 2Ga 2CuO 7 revealed by NMR

We present microscopic magnetic properties of a two-dimensional triangular lattice Sc 2Ga 2CuO 7, consisting of single and double triangular Cu planes. An antiferromagnetic (AFM) exchange interaction J/k B ≈ 35 K between Cu 2+ (S = 1/2) spins in the triangular biplane is obtained from the analysis of intrinsic magnetic susceptibility data. The intrinsic magnetic susceptibility, extracted from 71Ga NMR shift data, displays the presence of AFM short range spin correlations and remains finite down to 50 mK, suggesting a nonsinglet ground state. The nuclear spin-lattice relaxation rate (1/T 1) reveals a slowing down of Cu 2+ spin fluctuations with decreasing T down to 100 mK. Magnetic specific heat (C m) and 1/T 1 exhibit power law behavior at low temperatures, implying the gapless nature of the spin excitation spectrum. The absence of long range magnetic ordering down to ~J/700, nonzero spin susceptibility at low T, and the power law behavior of C m and 1/T 1 suggest a gapless quantum spin liquid (QSL) state. Our results demonstrate that persistent spin dynamics induced by frustration maintain a quantum-disordered state at T → 0 in this triangular lattice antiferromagnet. Furthermore, this suggests that the low energy modes are dominated bymore » spinon excitations in the QSL state due to randomness engendered by disorder and frustration.« less
Authors:
 [1] ;  [2] ;  [2] ;  [3] ;  [1]
  1. Ames Lab. and Iowa State Univ., Ames, IA (United States)
  2. Indian Institute of Technology Bombay Powai Mumbai (India)
  3. Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)
Publication Date:
Report Number(s):
IS-J-9012
Journal ID: ISSN 2469-9950; PRBMDO
Grant/Contract Number:
AC02-07CH11358
Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 93; Journal Issue: 14; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Research Org:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
OSTI Identifier:
1259550
Alternate Identifier(s):
OSTI ID: 1247906