skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Highly compressible 3D periodic graphene aerogel microlattices

Abstract

Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1259507
Alternate Identifier(s):
OSTI ID: 1410001
Report Number(s):
LLNL-JRNL-665510
Journal ID: ISSN 2041-1723; ncomms7962
Grant/Contract Number:  
AC52-07NA27344; 14-SI-004; 13-LW-099
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Zhu, Cheng, Han, T. Yong-Jin, Duoss, Eric B., Golobic, Alexandra M., Kuntz, Joshua D., Spadaccini, Christopher M., and Worsley, Marcus A. Highly compressible 3D periodic graphene aerogel microlattices. United States: N. p., 2015. Web. doi:10.1038/ncomms7962.
Zhu, Cheng, Han, T. Yong-Jin, Duoss, Eric B., Golobic, Alexandra M., Kuntz, Joshua D., Spadaccini, Christopher M., & Worsley, Marcus A. Highly compressible 3D periodic graphene aerogel microlattices. United States. doi:10.1038/ncomms7962.
Zhu, Cheng, Han, T. Yong-Jin, Duoss, Eric B., Golobic, Alexandra M., Kuntz, Joshua D., Spadaccini, Christopher M., and Worsley, Marcus A. Wed . "Highly compressible 3D periodic graphene aerogel microlattices". United States. doi:10.1038/ncomms7962. https://www.osti.gov/servlets/purl/1259507.
@article{osti_1259507,
title = {Highly compressible 3D periodic graphene aerogel microlattices},
author = {Zhu, Cheng and Han, T. Yong-Jin and Duoss, Eric B. and Golobic, Alexandra M. and Kuntz, Joshua D. and Spadaccini, Christopher M. and Worsley, Marcus A.},
abstractNote = {Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.},
doi = {10.1038/ncomms7962},
journal = {Nature Communications},
number = ,
volume = 6,
place = {United States},
year = {2015},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 153 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process
journal, July 2010

  • Xu, Yuxi; Sheng, Kaixuan; Li, Chun
  • ACS Nano, Vol. 4, Issue 7, p. 4324-4330
  • DOI: 10.1021/nn101187z

Low Temperature Casting of Graphene with High Compressive Strength
journal, July 2012


Epitaxial graphene on ruthenium
journal, April 2008

  • Sutter, Peter W.; Flege, Jan-Ingo; Sutter, Eli A.
  • Nature Materials, Vol. 7, Issue 5, p. 406-411
  • DOI: 10.1038/nmat2166

Toward Macroscale, Isotropic Carbons with Graphene-Sheet-Like Electrical and Mechanical Properties
journal, April 2014

  • Worsley, Marcus A.; Charnvanichborikarn, Supakit; Montalvo, Elizabeth
  • Advanced Functional Materials, Vol. 24, Issue 27, p. 4259-4264
  • DOI: 10.1002/adfm.201400316

Mechanically robust 3D graphene macroassembly with high surface area
journal, January 2012

  • Worsley, Marcus A.; Kucheyev, Sergei O.; Mason, Harris E.
  • Chemical Communications, Vol. 48, Issue 67, p. 8428-8430
  • DOI: 10.1039/c2cc33979j

Graphene: Status and Prospects
journal, June 2009


Directed Colloidal Assembly of 3D Periodic Structures
journal, September 2002


Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources
journal, January 2011

  • Zhang, Xuetong; Sui, Zhuyin; Xu, Bin
  • Journal of Materials Chemistry, Vol. 21, Issue 18
  • DOI: 10.1039/c1jm10239g

Graphene Based Electrochemical Sensors and Biosensors: A Review
journal, March 2010

  • Shao, Yuyan; Wang, Jun; Wu, Hong
  • Electroanalysis, Vol. 22, Issue 10, p. 1027-1036
  • DOI: 10.1002/elan.200900571

Fabrication of Graphene-Polymer Nanocomposites With Higher-Order Three-Dimensional Architectures
journal, June 2009

  • Vickery, Jemma L.; Patil, Avinash J.; Mann, Stephen
  • Advanced Materials, Vol. 21, Issue 21, p. 2180-2184
  • DOI: 10.1002/adma.200803606

Highly porous metals and ceramics
journal, October 2010


Noble-Metal-Promoted Three-Dimensional Macroassembly of Single-Layered Graphene Oxide
journal, May 2010

  • Tang, Zhihong; Shen, Shuling; Zhuang, Jing
  • Angewandte Chemie International Edition, Vol. 49, Issue 27, p. 4603-4607
  • DOI: 10.1002/anie.201000270

Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations
journal, January 2012

  • Zhao, Jinping; Ren, Wencai; Cheng, Hui-Ming
  • Journal of Materials Chemistry, Vol. 22, Issue 38
  • DOI: 10.1039/c2jm34128j

Printing in Three Dimensions with Graphene
journal, January 2015

  • García-Tuñon, Esther; Barg, Suelen; Franco, Jaime
  • Advanced Materials, Vol. 27, Issue 10
  • DOI: 10.1002/adma.201405046

Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue
journal, July 2012

  • Kim, Kyu Hun; Oh, Youngseok; Islam, M. F.
  • Nature Nanotechnology, Vol. 7, Issue 9
  • DOI: 10.1038/nnano.2012.118

Mesoscale assembly of chemically modified graphene into complex cellular networks
journal, July 2014

  • Barg, Suelen; Perez, Felipe Macul; Ni, Na
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5328

Ultralight Metallic Microlattices
journal, November 2011


3D-Printing of Lightweight Cellular Composites
journal, June 2014

  • Compton, Brett G.; Lewis, Jennifer A.
  • Advanced Materials, Vol. 26, Issue 34, p. 5930-5935
  • DOI: 10.1002/adma.201401804

Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels
journal, February 2013


Biomimetic superelastic graphene-based cellular monoliths
journal, January 2012

  • Qiu, Ling; Liu, Jeffery Z.; Chang, Shery L. Y.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2251

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
journal, July 2008


Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells
journal, January 2008

  • Wang, Xuan; Zhi, Linjie; Müllen, Klaus
  • Nano Letters, Vol. 8, Issue 1, p. 323-327
  • DOI: 10.1021/nl072838r

Three-Dimensional Printing of Elastomeric, Cellular Architectures with Negative Stiffness
journal, May 2014

  • Duoss, Eric B.; Weisgraber, Todd H.; Hearon, Keith
  • Advanced Functional Materials, Vol. 24, Issue 31
  • DOI: 10.1002/adfm.201400451

Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries
journal, August 2008

  • Yoo, EunJoo; Kim, Jedeok; Hosono, Eiji
  • Nano Letters, Vol. 8, Issue 8, p. 2277-2282
  • DOI: 10.1021/nl800957b

MATERIALS SCIENCE: Graphene-Based Materials
journal, May 2008


Superhydrophobic Functionalized Graphene Aerogels
journal, June 2011

  • Lin, Yirong; Ehlert, Gregory J.; Bukowsky, Colton
  • ACS Applied Materials & Interfaces, Vol. 3, Issue 7
  • DOI: 10.1021/am200527j

Macroscopic Multifunctional Graphene-Based Hydrogels and Aerogels by a Metal Ion Induced Self-Assembly Process
journal, February 2012

  • Cong, Huai-Ping; Ren, Xiao-Chen; Wang, Ping
  • ACS Nano, Vol. 6, Issue 3
  • DOI: 10.1021/nn300082k

Organic aerogels: microstructural dependence of mechanical properties in compression
journal, November 1990


Functionalized graphene sheets for polymer nanocomposites
journal, May 2008

  • Ramanathan, T.; Abdala, A. A.; Stankovich, S.
  • Nature Nanotechnology, Vol. 3, Issue 6, p. 327-331
  • DOI: 10.1038/nnano.2008.96

Superior Thermal Conductivity of Single-Layer Graphene
journal, March 2008

  • Balandin, Alexander A.; Ghosh, Suchismita; Bao, Wenzhong
  • Nano Letters, Vol. 8, Issue 3, p. 902-907
  • DOI: 10.1021/nl0731872

A pH-sensitive graphene oxide composite hydrogel
journal, January 2010

  • Bai, Hua; Li, Chun; Wang, Xiaolin
  • Chemical Communications, Vol. 46, Issue 14
  • DOI: 10.1039/c000051e

Thixotropic rheology of concentrated alumina colloidal gels for solid freeform fabrication
journal, May 2011

  • Zhu, Cheng; Smay, James E.
  • Journal of Rheology, Vol. 55, Issue 3
  • DOI: 10.1122/1.3573828

Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality
journal, December 2014

  • Si, Yang; Yu, Jianyong; Tang, Xiaomin
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6802

Ultralight, ultrastiff mechanical metamaterials
journal, June 2014


Mechanically robust and electrically conductive carbon nanotube foams
journal, February 2009

  • Worsley, Marcus A.; Kucheyev, Sergei O.; Satcher, Joe H.
  • Applied Physics Letters, Vol. 94, Issue 7, Article No. 073115
  • DOI: 10.1063/1.3086293

Graphene-based Composite Thin Films for Electronics
journal, February 2009


An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
journal, June 1992

  • Oliver, W. C.; Pharr, G. M.
  • Journal of Materials Research, Vol. 7, Issue 06, p. 1564-1583
  • DOI: 10.1557/JMR.1992.1564

Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition
journal, April 2011

  • Chen, Zongping; Ren, Wencai; Gao, Libo
  • Nature Materials, Vol. 10, Issue 6, p. 424-428
  • DOI: 10.1038/nmat3001

Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology
journal, January 2004


Specific surface area of carbon nanotubes and bundles of carbon nanotubes
journal, April 2001


Highly conducting graphene sheets and Langmuir–Blodgett films
journal, August 2008

  • Li, Xiaolin; Zhang, Guangyu; Bai, Xuedong
  • Nature Nanotechnology, Vol. 3, Issue 9, p. 538-542
  • DOI: 10.1038/nnano.2008.210

Detection of individual gas molecules adsorbed on graphene
journal, July 2007

  • Schedin, F.; Geim, A. K.; Morozov, S. V.
  • Nature Materials, Vol. 6, Issue 9, p. 652-655
  • DOI: 10.1038/nmat1967

Preparation of Graphitic Oxide
journal, March 1958

  • Hummers, William S.; Offeman, Richard E.
  • Journal of the American Chemical Society, Vol. 80, Issue 6, p. 1339-1339
  • DOI: 10.1021/ja01539a017

Oliver–Pharr indentation method in determining elastic moduli of shape memory alloys—A phase transformable material
journal, October 2013

  • Kan, Qianhua; Yan, Wenyi; Kang, Guozheng
  • Journal of the Mechanics and Physics of Solids, Vol. 61, Issue 10
  • DOI: 10.1016/j.jmps.2013.05.007

The rise of graphene
journal, March 2007

  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material
journal, April 2008

  • Eda, Goki; Fanchini, Giovanni; Chhowalla, Manish
  • Nature Nanotechnology, Vol. 3, Issue 5, p. 270-274
  • DOI: 10.1038/nnano.2008.83

Synthesis of Graphene Aerogel with High Electrical Conductivity
journal, October 2010

  • Worsley, Marcus A.; Pauzauskie, Peter J.; Olson, Tammy Y.
  • Journal of the American Chemical Society, Vol. 132, Issue 40, p. 14067-14069
  • DOI: 10.1021/ja1072299

High Surface Area, sp2-Cross-Linked Three-Dimensional Graphene Monoliths
journal, April 2011

  • Worsley, Marcus A.; Olson, Tammy Y.; Lee, Jonathan R. I.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 8, p. 921-925
  • DOI: 10.1021/jz200223x

Ammonia solution strengthened three-dimensional macro-porous graphene aerogel
journal, January 2013


Direct Ink Writing of 3D Functional Materials
journal, November 2006


On the Gelation of Graphene Oxide
journal, March 2011

  • Bai, Hua; Li, Chun; Wang, Xiaolin
  • The Journal of Physical Chemistry C, Vol. 115, Issue 13
  • DOI: 10.1021/jp1120299

Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide
journal, April 2011


Graphene-based materials for catalysis
journal, January 2012

  • Machado, Bruno F.; Serp, Philippe
  • Catal. Sci. Technol., Vol. 2, Issue 1
  • DOI: 10.1039/C1CY00361E

Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine: The G point in stem cell research?
journal, June 2014

  • Menaa, Farid; Abdelghani, Adnane; Menaa, Bouzid
  • Journal of Tissue Engineering and Regenerative Medicine, Vol. 9, Issue 12
  • DOI: 10.1002/term.1910

Graphene oxide dispersions: tuning rheology to enable fabrication
journal, January 2014

  • Naficy, Sina; Jalili, Rouhollah; Aboutalebi, Seyed Hamed
  • Mater. Horiz., Vol. 1, Issue 3
  • DOI: 10.1039/C3MH00144J

    Works referencing / citing this record:

    3D Printing of Ultralight Biomimetic Hierarchical Graphene Materials with Exceptional Stiffness and Resilience
    journal, July 2019


    Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites
    journal, October 2017

    • Tung, Tran Thanh; Nine, Md J.; Krebsz, Melinda
    • Advanced Functional Materials, Vol. 27, Issue 46
    • DOI: 10.1002/adfm.201702891

    Recent Progress of Polysaccharide‐Based Hydrogel Interfaces for Wound Healing and Tissue Engineering
    journal, July 2019

    • Zhu, Tianxue; Mao, Jiajun; Cheng, Yan
    • Advanced Materials Interfaces, Vol. 6, Issue 17
    • DOI: 10.1002/admi.201900761

    Hierarchical Metal–Organic Frameworks with Macroporosity: Synthesis, Achievements, and Challenges
    journal, July 2019

    • Doan, Huan V.; Amer Hamzah, Harina; Karikkethu Prabhakaran, Prasanth
    • Nano-Micro Letters, Vol. 11, Issue 1
    • DOI: 10.1007/s40820-019-0286-9

    Compressive Response of Non-slender Octet Carbon Microlattices
    journal, July 2019


    Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites
    journal, October 2017

    • Tung, Tran Thanh; Nine, Md J.; Krebsz, Melinda
    • Advanced Functional Materials, Vol. 27, Issue 46
    • DOI: 10.1002/adfm.201702891

    3D Printing of Ultralight Biomimetic Hierarchical Graphene Materials with Exceptional Stiffness and Resilience
    journal, July 2019


    Recent Progress of Polysaccharide‐Based Hydrogel Interfaces for Wound Healing and Tissue Engineering
    journal, July 2019

    • Zhu, Tianxue; Mao, Jiajun; Cheng, Yan
    • Advanced Materials Interfaces, Vol. 6, Issue 17
    • DOI: 10.1002/admi.201900761

    Hierarchical Metal–Organic Frameworks with Macroporosity: Synthesis, Achievements, and Challenges
    journal, July 2019

    • Doan, Huan V.; Amer Hamzah, Harina; Karikkethu Prabhakaran, Prasanth
    • Nano-Micro Letters, Vol. 11, Issue 1
    • DOI: 10.1007/s40820-019-0286-9

    Compressive Response of Non-slender Octet Carbon Microlattices
    journal, July 2019


    From Flatland to Spaceland: Higher Dimensional Patterning with Two-Dimensional Materials
    journal, February 2017

    • Chen, Po-Yen; Liu, Muchun; Wang, Zhongying
    • Advanced Materials, Vol. 29, Issue 23
    • DOI: 10.1002/adma.201605096