DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study

Abstract

In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density can compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.

Authors:
 [1];  [2];  [1]
  1. Univ. of Kaiserslautern (Germany)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1257807
Report Number(s):
SAND2016-4834J
Journal ID: ISSN 2304-6732; 640623
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Photonics
Additional Journal Information:
Journal Volume: 3; Journal Issue: 2; Journal ID: ISSN 2304-6732
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Michael, Stephan, Chow, Weng, and Schneider, Hans. Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study. United States: N. p., 2016. Web. doi:10.3390/photonics3020029.
Michael, Stephan, Chow, Weng, & Schneider, Hans. Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study. United States. https://doi.org/10.3390/photonics3020029
Michael, Stephan, Chow, Weng, and Schneider, Hans. Sun . "Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study". United States. https://doi.org/10.3390/photonics3020029. https://www.osti.gov/servlets/purl/1257807.
@article{osti_1257807,
title = {Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study},
author = {Michael, Stephan and Chow, Weng and Schneider, Hans},
abstractNote = {In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density can compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.},
doi = {10.3390/photonics3020029},
journal = {Photonics},
number = 2,
volume = 3,
place = {United States},
year = {Sun May 01 00:00:00 EDT 2016},
month = {Sun May 01 00:00:00 EDT 2016}
}

Works referenced in this record:

On the Nature of Charge Transport in Quantum-Cascade Lasers
text, January 2001


Quantum-dot cascade laser: proposal for an ultralow-threshold semiconductor laser
journal, July 1997

  • Wingreen, N. S.; Stafford, C. A.
  • IEEE Journal of Quantum Electronics, Vol. 33, Issue 7
  • DOI: 10.1109/3.594880

Circumventing the Manley-Rowe Quantum Efficiency Limit in an Optically Pumped Terahertz Quantum-Cascade Amplifier
journal, September 2007


Quantum Cascade Laser
journal, April 1994


Recent progress in quantum cascade lasers and applications
journal, October 2001

  • Gmachl, Claire; Capasso, Federico; Sivco, Deborah L.
  • Reports on Progress in Physics, Vol. 64, Issue 11
  • DOI: 10.1088/0034-4885/64/11/204

Quantum cascade lasers that emit more light than heat
journal, January 2010


Mid-infrared quantum cascade lasers
journal, June 2012


Nature of Charge Transport in Quantum-Cascade Lasers
journal, September 2001


Inverse-Quantum-Engineering: A New Methodology for Designing Quantum Cascade Lasers
journal, October 2010

  • Waldmuelle, Inès; Wanke, Michael C.; Lerttamrab, Maytee
  • IEEE Journal of Quantum Electronics, Vol. 46, Issue 10
  • DOI: 10.1109/JQE.2010.2049253

Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power
journal, March 2008

  • Bai, Y.; Darvish, S. R.; Slivken, S.
  • Applied Physics Letters, Vol. 92, Issue 10
  • DOI: 10.1063/1.2894569

High power mid‐infrared (λ∼5 μm) quantum cascade lasers operating above room temperature
journal, June 1996

  • Faist, Jérôme; Capasso, Federico; Sirtori, Carlo
  • Applied Physics Letters, Vol. 68, Issue 26
  • DOI: 10.1063/1.115741

300 K operation of a GaAs-based quantum-cascade laser at λ≈9 μm
journal, May 2001

  • Page, H.; Becker, C.; Robertson, A.
  • Applied Physics Letters, Vol. 78, Issue 22
  • DOI: 10.1063/1.1374520

High-power, continuous-operation intersubband laser for wavelengths greater than 10μm
journal, April 2007

  • Slivken, S.; Evans, A.; Zhang, W.
  • Applied Physics Letters, Vol. 90, Issue 15
  • DOI: 10.1063/1.2722190

Nanowire terahertz quantum cascade lasers
journal, October 2014


Electron transport in quantum wire superlattices
journal, April 2014


Quantum-dot cascade laser: proposal for an ultralow-threshold semiconductor laser
journal, July 1997

  • Wingreen, N. S.; Stafford, C. A.
  • IEEE Journal of Quantum Electronics, Vol. 33, Issue 7
  • DOI: 10.1109/3.594880

Intersubband quantum-box semiconductor lasers
journal, May 2000

  • Chia-Fu Hsu, ; Zory, P.
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 6, Issue 3
  • DOI: 10.1109/2944.865104

Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well
journal, January 1999

  • Liu, G. T.; Stintz, A.; Li, H.
  • Electronics Letters, Vol. 35, Issue 14
  • DOI: 10.1049/el:19990811

Continuous-wave operation of long-wavelength quantum-dot diode laser on a GaAs substrate
journal, November 1999

  • Zhukov, A. E.; Kovsh, A. R.; Ustinov, V. M.
  • IEEE Photonics Technology Letters, Vol. 11, Issue 11
  • DOI: 10.1109/68.803040

Quantum dot laser diode with low threshold and low internal loss
journal, January 2009

  • Deppe, D. G.; Shavritranuruk, K.; Ozgur, G.
  • Electronics Letters, Vol. 45, Issue 1
  • DOI: 10.1049/el:20092873

Ground-state lasing in high-power InAs/GaAs quantum dots-in-a-well laser using active multimode interference structure
journal, December 2014

  • Cheng, Yuanbing; Wu, Jian; Zhao, Lingjuan
  • Optics Letters, Vol. 40, Issue 1
  • DOI: 10.1364/OL.40.000069

Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors
journal, October 1998

  • Pan, Dong; Towe, Elias; Kennerly, Steve
  • Applied Physics Letters, Vol. 73, Issue 14
  • DOI: 10.1063/1.122328

High-detectivity InAs quantum-dot infrared photodetectors grown on InP by metal–organic chemical–vapor deposition
journal, May 2005

  • Zhang, W.; Lim, H.; Taguchi, M.
  • Applied Physics Letters, Vol. 86, Issue 19
  • DOI: 10.1063/1.1923176

Intraband transitions in quantum dot–superlattice heterostructures
journal, October 2005


Midinfrared intraband electroluminescence from AlInAs quantum dots
journal, August 2003

  • Ulbrich, N.; Bauer, J.; Scarpa, G.
  • Applied Physics Letters, Vol. 83, Issue 8
  • DOI: 10.1063/1.1604469

Electroluminescence of a quantum dot cascade structure
journal, June 2003

  • Anders, S.; Rebohle, L.; Schrey, F. F.
  • Applied Physics Letters, Vol. 82, Issue 22
  • DOI: 10.1063/1.1579854

Quantum dot cascade laser
journal, March 2014

  • Zhuo, Ning; Liu, Feng Qi; Zhang, Jin Chuan
  • Nanoscale Research Letters, Vol. 9, Issue 1
  • DOI: 10.1186/1556-276X-9-144

Room temperature midinfrared electroluminescence from InAs quantum dots
journal, February 2009

  • Wasserman, D.; Ribaudo, T.; Lyon, S. A.
  • Applied Physics Letters, Vol. 94, Issue 6
  • DOI: 10.1063/1.3080688

Midinfrared electroluminescence from PbTe/CdTe quantum dot light-emitting diodes
journal, January 2011

  • Hochreiner, A.; Schwarzl, T.; Eibelhuber, M.
  • Applied Physics Letters, Vol. 98, Issue 2
  • DOI: 10.1063/1.3531760

Microscopic model for intersubband gain from electrically pumped quantum-dot structures
journal, October 2014


Quantum dots as active material for quantum cascade lasers: comparison to quantum wells
conference, March 2016

  • Michael, Stephan; Chow, Weng W.; Schneider, Hans Christian
  • SPIE Proceedings
  • DOI: 10.1117/12.2213324

On the physics of semiconductor quantum dots for applications in lasers and quantum optics
journal, May 2013


Density matrix model for polarons in a terahertz quantum dot cascade laser
journal, October 2014


Equation-of-motion technique for finite-size quantum-dot systems: Cluster expansion method
journal, April 2013


On conversion of luminescence into absorption and the van Roosbroeck-Shockley relation
journal, May 2012

  • Bhattacharya, Rupak; Pal, Bipul; Bansal, Bhavtosh
  • Applied Physics Letters, Vol. 100, Issue 22
  • DOI: 10.1063/1.4721495