skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Machine learning strategy for accelerated design of polymer dielectrics

Abstract

The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-art first principles computations for polymers occupying an important part of the chemical subspace. The polymers are ‘fingerprinted’ as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand property prediction model. Further, a genetic algorithm is utilised to optimise polymer constituent blocks in an evolutionary manner, thus directly leading to the design of polymers with given target properties. Furthermore, while this philosophy of learning to make instant predictions and design is demonstrated here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well.

Authors:
 [1];  [2];  [1];  [2];  [1]
  1. Univ. of Connecticut, Storrs, CT (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1248893
Report Number(s):
LA-UR-15-26906
Journal ID: ISSN 2045-2322; srep20952
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; computational methods; electronic devices

Citation Formats

Mannodi-Kanakkithodi, Arun, Pilania, Ghanshyam, Huan, Tran Doan, Lookman, Turab, and Ramprasad, Rampi. Machine learning strategy for accelerated design of polymer dielectrics. United States: N. p., 2016. Web. doi:10.1038/srep20952.
Mannodi-Kanakkithodi, Arun, Pilania, Ghanshyam, Huan, Tran Doan, Lookman, Turab, & Ramprasad, Rampi. Machine learning strategy for accelerated design of polymer dielectrics. United States. doi:10.1038/srep20952.
Mannodi-Kanakkithodi, Arun, Pilania, Ghanshyam, Huan, Tran Doan, Lookman, Turab, and Ramprasad, Rampi. Mon . "Machine learning strategy for accelerated design of polymer dielectrics". United States. doi:10.1038/srep20952. https://www.osti.gov/servlets/purl/1248893.
@article{osti_1248893,
title = {Machine learning strategy for accelerated design of polymer dielectrics},
author = {Mannodi-Kanakkithodi, Arun and Pilania, Ghanshyam and Huan, Tran Doan and Lookman, Turab and Ramprasad, Rampi},
abstractNote = {The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-art first principles computations for polymers occupying an important part of the chemical subspace. The polymers are ‘fingerprinted’ as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand property prediction model. Further, a genetic algorithm is utilised to optimise polymer constituent blocks in an evolutionary manner, thus directly leading to the design of polymers with given target properties. Furthermore, while this philosophy of learning to make instant predictions and design is demonstrated here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well.},
doi = {10.1038/srep20952},
journal = {Scientific Reports},
number = ,
volume = 6,
place = {United States},
year = {2016},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Rational design of all organic polymer dielectrics
journal, September 2014

  • Sharma, Vinit; Wang, Chenchen; Lorenzini, Robert G.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5845

Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
journal, October 2006

  • Greeley, Jeff; Jaramillo, Thomas F.; Bonde, Jacob
  • Nature Materials, Vol. 5, Issue 11, p. 909-913
  • DOI: 10.1038/nmat1752

Accelerated materials property predictions and design using motif-based fingerprints
journal, July 2015

  • Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Ramprasad, Rampi
  • Physical Review B, Vol. 92, Issue 1
  • DOI: 10.1103/PhysRevB.92.014106

Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory
journal, June 2010

  • Hautier, Geoffroy; Fischer, Christopher C.; Jain, Anubhav
  • Chemistry of Materials, Vol. 22, Issue 12
  • DOI: 10.1021/cm100795d

Genetic-Algorithm Discovery of a Direct-Gap and Optically Allowed Superstructure from Indirect-Gap Si and Ge Semiconductors
journal, January 2012


A polymer high-k dielectric insulator for organic field-effect transistors
journal, September 2005

  • Müller, Klaus; Paloumpa, Ioanna; Henkel, Karsten
  • Journal of Applied Physics, Vol. 98, Issue 5
  • DOI: 10.1063/1.2032611

Rational design and synthesis of polythioureas as capacitor dielectrics
journal, January 2015

  • Ma, Rui; Sharma, Vinit; Baldwin, Aaron F.
  • Journal of Materials Chemistry A, Vol. 3, Issue 28
  • DOI: 10.1039/C5TA01252J

Poly(dimethyltin glutarate) as a Prospective Material for High Dielectric Applications
journal, November 2014

  • Baldwin, Aaron F.; Ma, Rui; Mannodi-Kanakkithodi, Arun
  • Advanced Materials, Vol. 27, Issue 2
  • DOI: 10.1002/adma.201404162

Rational Design of Organotin Polyesters
journal, April 2015

  • Baldwin, Aaron F.; Huan, Tran Doan; Ma, Rui
  • Macromolecules, Vol. 48, Issue 8
  • DOI: 10.1021/ma502424r

New Group IV Chemical Motifs for Improved Dielectric Permittivity of Polyethylene
journal, April 2013

  • Pilania, G.; Wang, C. C.; Wu, K.
  • Journal of Chemical Information and Modeling, Vol. 53, Issue 4
  • DOI: 10.1021/ci400033h

π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications
journal, February 2011


A high-mobility electron-transporting polymer for printed transistors
journal, January 2009

  • Yan, He; Chen, Zhihua; Zheng, Yan
  • Nature, Vol. 457, Issue 7230, p. 679-686
  • DOI: 10.1038/nature07727

Probabilistic machine learning and artificial intelligence
journal, May 2015


How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
journal, May 2014


Crystal structure representations for machine learning models of formation energies
journal, April 2015

  • Faber, Felix; Lindmaa, Alexander; von Lilienfeld, O. Anatole
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24917

Machine Learning Energies of 2 Million Elpasolite ( A B C 2 D 6 ) Crystals
journal, September 2016


Performance of genetic algorithms in search for water splitting perovskites
journal, May 2013

  • Jain, Anubhav; Castelli, Ivano E.; Hautier, Geoffroy
  • Journal of Materials Science, Vol. 48, Issue 19
  • DOI: 10.1007/s10853-013-7448-9

Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems
journal, June 2004

  • Goedecker, Stefan
  • The Journal of Chemical Physics, Vol. 120, Issue 21
  • DOI: 10.1063/1.1724816

Crystal structure prediction using the minima hopping method
journal, December 2010

  • Amsler, Maximilian; Goedecker, Stefan
  • The Journal of Chemical Physics, Vol. 133, Issue 22
  • DOI: 10.1063/1.3512900

Dielectric properties of carbon-, silicon-, and germanium-based polymers: A first-principles study
journal, January 2013


Compounds based on Group 14 elements: building blocks for advanced insulator dielectrics design
journal, October 2014

  • Mannodi-Kanakkithodi, A.; Wang, C. C.; Ramprasad, R.
  • Journal of Materials Science, Vol. 50, Issue 2
  • DOI: 10.1007/s10853-014-8640-2

Accelerating materials property predictions using machine learning
journal, September 2013

  • Pilania, Ghanshyam; Wang, Chenchen; Jiang, Xun
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02810

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
journal, January 2012


Big Data of Materials Science: Critical Role of the Descriptor
journal, March 2015


Combinatorial screening for new materials in unconstrained composition space with machine learning
journal, March 2014


Adaptive machine learning framework to accelerate ab initio molecular dynamics
journal, December 2014

  • Botu, Venkatesh; Ramprasad, Rampi
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24836

Understanding kernel ridge regression: Common behaviors from simple functions to density functionals
journal, May 2015

  • Vu, Kevin; Snyder, John C.; Li, Li
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24939

Conducting Boron Sheets Formed by the Reconstruction of the α -Boron (111) Surface
journal, September 2013


Pathways towards ferroelectricity in hafnia
journal, August 2014


Inhomogeneous Electron Gas
journal, November 1964


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Chemical accuracy for the van der Waals density functional
journal, December 2009

  • Klimeš, Jiří; Bowler, David R.; Michaelides, Angelos
  • Journal of Physics: Condensed Matter, Vol. 22, Issue 2
  • DOI: 10.1088/0953-8984/22/2/022201

Projector augmented-wave method
journal, December 1994


Phonons and related crystal properties from density-functional perturbation theory
journal, July 2001

  • Baroni, Stefano; de Gironcoli, Stefano; Dal Corso, Andrea
  • Reviews of Modern Physics, Vol. 73, Issue 2
  • DOI: 10.1103/RevModPhys.73.515

Polarization-Based Calculation of the Dielectric Tensor of Polar Crystals
journal, November 1997

  • Bernardini, Fabio; Fiorentini, Vincenzo; Vanderbilt, David
  • Physical Review Letters, Vol. 79, Issue 20
  • DOI: 10.1103/PhysRevLett.79.3958

Phonons and lattice dielectric properties of zirconia
journal, January 2002


Hybrid functionals based on a screened Coulomb potential
journal, May 2003

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564060

Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional
journal, November 2005

  • Heyd, Jochen; Peralta, Juan E.; Scuseria, Gustavo E.
  • The Journal of Chemical Physics, Vol. 123, Issue 17
  • DOI: 10.1063/1.2085170

Inhomogeneous Electron Gas
journal, March 1973


    Works referencing / citing this record:

    A polymer dataset for accelerated property prediction and design
    journal, March 2016

    • Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho
    • Scientific Data, Vol. 3, Issue 1
    • DOI: 10.1038/sdata.2016.12

    A hybrid organic-inorganic perovskite dataset
    journal, May 2017

    • Kim, Chiho; Huan, Tran Doan; Krishnan, Sridevi
    • Scientific Data, Vol. 4, Issue 1
    • DOI: 10.1038/sdata.2017.57

    Challenges and opportunities of polymer design with machine learning and high throughput experimentation
    journal, May 2019

    • Kumar, Jatin N.; Li, Qianxiao; Jun, Ye
    • MRS Communications, Vol. 9, Issue 02
    • DOI: 10.1557/mrc.2019.54

    Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm
    journal, June 2019


    Silicon‐containing fluorenylacetylene resins with low curing temperature and high thermal stability
    journal, July 2019

    • Lu, Liewei; Guo, Kangkang; Zhu, Junli
    • Journal of Applied Polymer Science, Vol. 136, Issue 48
    • DOI: 10.1002/app.48262

    Recent advances and applications of machine learning in solid-state materials science
    journal, August 2019

    • Schmidt, Jonathan; Marques, Mário R. G.; Botti, Silvana
    • npj Computational Materials, Vol. 5, Issue 1
    • DOI: 10.1038/s41524-019-0221-0

    Silicon‐containing fluorenylacetylene resins with low curing temperature and high thermal stability
    journal, July 2019

    • Lu, Liewei; Guo, Kangkang; Zhu, Junli
    • Journal of Applied Polymer Science, Vol. 136, Issue 48
    • DOI: 10.1002/app.48262

    Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm
    journal, June 2019


    Recent advances and applications of machine learning in solid-state materials science
    journal, August 2019

    • Schmidt, Jonathan; Marques, Mário R. G.; Botti, Silvana
    • npj Computational Materials, Vol. 5, Issue 1
    • DOI: 10.1038/s41524-019-0221-0

    A polymer dataset for accelerated property prediction and design
    journal, March 2016

    • Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho
    • Scientific Data, Vol. 3, Issue 1
    • DOI: 10.1038/sdata.2016.12

    A hybrid organic-inorganic perovskite dataset
    journal, May 2017

    • Kim, Chiho; Huan, Tran Doan; Krishnan, Sridevi
    • Scientific Data, Vol. 4, Issue 1
    • DOI: 10.1038/sdata.2017.57

    Predicting electronic structure properties of transition metal complexes with neural networks
    journal, January 2017

    • Janet, Jon Paul; Kulik, Heather J.
    • Chemical Science, Vol. 8, Issue 7
    • DOI: 10.1039/c7sc01247k

    Challenges and opportunities of polymer design with machine learning and high throughput experimentation
    journal, May 2019

    • Kumar, Jatin N.; Li, Qianxiao; Jun, Ye
    • MRS Communications, Vol. 9, Issue 02
    • DOI: 10.1557/mrc.2019.54

    A Transfer Learning Approach for Microstructure Reconstruction and Structure-property Predictions
    journal, September 2018


    Machine-learned impurity level prediction for semiconductors: the example of Cd-based chalcogenides
    journal, April 2020

    • Mannodi-Kanakkithodi, Arun; Toriyama, Michael Y.; Sen, Fatih G.
    • npj Computational Materials, Vol. 6, Issue 1
    • DOI: 10.1038/s41524-020-0296-7

    High‐Throughput Combinatorial Optimizations of Perovskite Light‐Emitting Diodes Based on All‐Vacuum Deposition
    journal, October 2019

    • Li, Jinghui; Du, Peipei; Li, Shunran
    • Advanced Functional Materials, Vol. 29, Issue 51
    • DOI: 10.1002/adfm.201903607

    Rational Co-Design of Polymer Dielectrics for Energy Storage
    journal, May 2016

    • Mannodi-Kanakkithodi, Arun; Treich, Gregory M.; Huan, Tran Doan
    • Advanced Materials, Vol. 28, Issue 30
    • DOI: 10.1002/adma.201600377

    Soft Matter Informatics: Current Progress and Challenges
    journal, November 2018

    • Peerless, James S.; Milliken, Nina J. B.; Oweida, Thomas J.
    • Advanced Theory and Simulations, Vol. 2, Issue 1
    • DOI: 10.1002/adts.201800129

    iQSPR in XenonPy: A Bayesian Molecular Design Algorithm
    journal, November 2019

    • Wu, Stephen; Lambard, Guillaume; Liu, Chang
    • Molecular Informatics, Vol. 39, Issue 1-2
    • DOI: 10.1002/minf.201900107

    Machine learning properties of binary wurtzite superlattices
    journal, January 2018


    Data-enabled structure–property mappings for lanthanide-activated inorganic scintillators
    journal, February 2019


    A universal strategy for the creation of machine learning-based atomistic force fields
    journal, September 2017


    Machine learning in materials informatics: recent applications and prospects
    journal, December 2017

    • Ramprasad, Rampi; Batra, Rohit; Pilania, Ghanshyam
    • npj Computational Materials, Vol. 3, Issue 1
    • DOI: 10.1038/s41524-017-0056-5

    Active learning for accelerated design of layered materials
    journal, December 2018

    • Bassman, Lindsay; Rajak, Pankaj; Kalia, Rajiv K.
    • npj Computational Materials, Vol. 4, Issue 1
    • DOI: 10.1038/s41524-018-0129-0

    Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design
    journal, February 2019

    • Lookman, Turab; Balachandran, Prasanna V.; Xue, Dezhen
    • npj Computational Materials, Vol. 5, Issue 1
    • DOI: 10.1038/s41524-019-0153-8

    Solving the electronic structure problem with machine learning
    journal, February 2019

    • Chandrasekaran, Anand; Kamal, Deepak; Batra, Rohit
    • npj Computational Materials, Vol. 5, Issue 1
    • DOI: 10.1038/s41524-019-0162-7

    Machine learning enables polymer cloud-point engineering via inverse design
    journal, July 2019

    • Kumar, Jatin N.; Li, Qianxiao; Tang, Karen Y. T.
    • npj Computational Materials, Vol. 5, Issue 1
    • DOI: 10.1038/s41524-019-0209-9

    Applying machine learning techniques to predict the properties of energetic materials
    journal, June 2018


    Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers
    journal, January 2019

    • Afzal, Mohammad Atif Faiz; Hachmann, Johannes
    • Physical Chemistry Chemical Physics, Vol. 21, Issue 8
    • DOI: 10.1039/c8cp05492d

    Combining first-principles and data modeling for the accurate prediction of the refractive index of organic polymers
    journal, June 2018

    • Afzal, Mohammad Atif Faiz; Cheng, Chong; Hachmann, Johannes
    • The Journal of Chemical Physics, Vol. 148, Issue 24
    • DOI: 10.1063/1.5007873

    Physics-informed machine learning for inorganic scintillator discovery
    journal, June 2018

    • Pilania, G.; McClellan, K. J.; Stanek, C. R.
    • The Journal of Chemical Physics, Vol. 148, Issue 24
    • DOI: 10.1063/1.5025819

    Accelerated search for BaTiO 3 -based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning
    journal, November 2016

    • Xue, Dezhen; Balachandran, Prasanna V.; Yuan, Ruihao
    • Proceedings of the National Academy of Sciences, Vol. 113, Issue 47
    • DOI: 10.1073/pnas.1607412113

    Learning physical descriptors for materials science by compressed sensing
    journal, February 2017

    • Ghiringhelli, Luca M.; Vybiral, Jan; Ahmetcik, Emre
    • New Journal of Physics, Vol. 19, Issue 2
    • DOI: 10.1088/1367-2630/aa57bf

    From DFT to machine learning: recent approaches to materials science–a review
    journal, May 2019

    • Schleder, Gabriel R.; Padilha, Antonio C. M.; Acosta, Carlos Mera
    • Journal of Physics: Materials, Vol. 2, Issue 3
    • DOI: 10.1088/2515-7639/ab084b

    Pressure-stabilized binary compounds of magnesium and silicon
    journal, February 2018


    Machine learning in materials design and discovery: Examples from the present and suggestions for the future
    journal, December 2018


    Active-learning and materials design: the example of high glass transition temperature polymers
    journal, June 2019

    • Kim, Chiho; Chandrasekaran, Anand; Jha, Anurag
    • MRS Communications, Vol. 9, Issue 3
    • DOI: 10.1557/mrc.2019.78

    Finding New Perovskite Halides via Machine Learning
    journal, April 2016

    • Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho
    • Frontiers in Materials, Vol. 3
    • DOI: 10.3389/fmats.2016.00019

    Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges
    journal, January 2020