skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Machine learning strategy for accelerated design of polymer dielectrics

Abstract

The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-art first principles computations for polymers occupying an important part of the chemical subspace. The polymers are ‘fingerprinted’ as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand property prediction model. Further, a genetic algorithm is utilised to optimise polymer constituent blocks in an evolutionary manner, thus directly leading to the design of polymers with given target properties. Furthermore, while this philosophy of learning to make instant predictions and design is demonstrated here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well.

Authors:
 [1];  [2];  [1];  [2];  [1]
  1. Univ. of Connecticut, Storrs, CT (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1248893
Report Number(s):
LA-UR-15-26906
Journal ID: ISSN 2045-2322; srep20952
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; computational methods; electronic devices

Citation Formats

Mannodi-Kanakkithodi, Arun, Pilania, Ghanshyam, Huan, Tran Doan, Lookman, Turab, and Ramprasad, Rampi. Machine learning strategy for accelerated design of polymer dielectrics. United States: N. p., 2016. Web. doi:10.1038/srep20952.
Mannodi-Kanakkithodi, Arun, Pilania, Ghanshyam, Huan, Tran Doan, Lookman, Turab, & Ramprasad, Rampi. Machine learning strategy for accelerated design of polymer dielectrics. United States. doi:10.1038/srep20952.
Mannodi-Kanakkithodi, Arun, Pilania, Ghanshyam, Huan, Tran Doan, Lookman, Turab, and Ramprasad, Rampi. Mon . "Machine learning strategy for accelerated design of polymer dielectrics". United States. doi:10.1038/srep20952. https://www.osti.gov/servlets/purl/1248893.
@article{osti_1248893,
title = {Machine learning strategy for accelerated design of polymer dielectrics},
author = {Mannodi-Kanakkithodi, Arun and Pilania, Ghanshyam and Huan, Tran Doan and Lookman, Turab and Ramprasad, Rampi},
abstractNote = {The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-art first principles computations for polymers occupying an important part of the chemical subspace. The polymers are ‘fingerprinted’ as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand property prediction model. Further, a genetic algorithm is utilised to optimise polymer constituent blocks in an evolutionary manner, thus directly leading to the design of polymers with given target properties. Furthermore, while this philosophy of learning to make instant predictions and design is demonstrated here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well.},
doi = {10.1038/srep20952},
journal = {Scientific Reports},
number = ,
volume = 6,
place = {United States},
year = {2016},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Rational design of all organic polymer dielectrics
journal, September 2014

  • Sharma, Vinit; Wang, Chenchen; Lorenzini, Robert G.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5845

Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
journal, October 2006

  • Greeley, Jeff; Jaramillo, Thomas F.; Bonde, Jacob
  • Nature Materials, Vol. 5, Issue 11, p. 909-913
  • DOI: 10.1038/nmat1752

Accelerated materials property predictions and design using motif-based fingerprints
journal, July 2015

  • Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Ramprasad, Rampi
  • Physical Review B, Vol. 92, Issue 1
  • DOI: 10.1103/PhysRevB.92.014106

Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory
journal, June 2010

  • Hautier, Geoffroy; Fischer, Christopher C.; Jain, Anubhav
  • Chemistry of Materials, Vol. 22, Issue 12
  • DOI: 10.1021/cm100795d

Genetic-Algorithm Discovery of a Direct-Gap and Optically Allowed Superstructure from Indirect-Gap Si and Ge Semiconductors
journal, January 2012


A polymer high-k dielectric insulator for organic field-effect transistors
journal, September 2005

  • Müller, Klaus; Paloumpa, Ioanna; Henkel, Karsten
  • Journal of Applied Physics, Vol. 98, Issue 5
  • DOI: 10.1063/1.2032611

Rational design and synthesis of polythioureas as capacitor dielectrics
journal, January 2015

  • Ma, Rui; Sharma, Vinit; Baldwin, Aaron F.
  • Journal of Materials Chemistry A, Vol. 3, Issue 28
  • DOI: 10.1039/C5TA01252J

Poly(dimethyltin glutarate) as a Prospective Material for High Dielectric Applications
journal, November 2014

  • Baldwin, Aaron F.; Ma, Rui; Mannodi-Kanakkithodi, Arun
  • Advanced Materials, Vol. 27, Issue 2
  • DOI: 10.1002/adma.201404162

Rational Design of Organotin Polyesters
journal, April 2015

  • Baldwin, Aaron F.; Huan, Tran Doan; Ma, Rui
  • Macromolecules, Vol. 48, Issue 8
  • DOI: 10.1021/ma502424r

New Group IV Chemical Motifs for Improved Dielectric Permittivity of Polyethylene
journal, April 2013

  • Pilania, G.; Wang, C. C.; Wu, K.
  • Journal of Chemical Information and Modeling, Vol. 53, Issue 4
  • DOI: 10.1021/ci400033h

π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications
journal, February 2011


A high-mobility electron-transporting polymer for printed transistors
journal, January 2009

  • Yan, He; Chen, Zhihua; Zheng, Yan
  • Nature, Vol. 457, Issue 7230, p. 679-686
  • DOI: 10.1038/nature07727

Probabilistic machine learning and artificial intelligence
journal, May 2015


Crystal structure representations for machine learning models of formation energies
journal, April 2015

  • Faber, Felix; Lindmaa, Alexander; von Lilienfeld, O. Anatole
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24917

Machine Learning Energies of 2 Million Elpasolite ( A B C 2 D 6 ) Crystals
journal, September 2016


Performance of genetic algorithms in search for water splitting perovskites
journal, May 2013

  • Jain, Anubhav; Castelli, Ivano E.; Hautier, Geoffroy
  • Journal of Materials Science, Vol. 48, Issue 19
  • DOI: 10.1007/s10853-013-7448-9

Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems
journal, June 2004

  • Goedecker, Stefan
  • The Journal of Chemical Physics, Vol. 120, Issue 21
  • DOI: 10.1063/1.1724816

Crystal structure prediction using the minima hopping method
journal, December 2010

  • Amsler, Maximilian; Goedecker, Stefan
  • The Journal of Chemical Physics, Vol. 133, Issue 22
  • DOI: 10.1063/1.3512900

Dielectric properties of carbon-, silicon-, and germanium-based polymers: A first-principles study
journal, January 2013


Compounds based on Group 14 elements: building blocks for advanced insulator dielectrics design
journal, October 2014

  • Mannodi-Kanakkithodi, A.; Wang, C. C.; Ramprasad, R.
  • Journal of Materials Science, Vol. 50, Issue 2
  • DOI: 10.1007/s10853-014-8640-2

Accelerating materials property predictions using machine learning
journal, September 2013

  • Pilania, Ghanshyam; Wang, Chenchen; Jiang, Xun
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02810

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
journal, January 2012


Big Data of Materials Science: Critical Role of the Descriptor
journal, March 2015


Combinatorial screening for new materials in unconstrained composition space with machine learning
journal, March 2014


Adaptive machine learning framework to accelerate ab initio molecular dynamics
journal, December 2014

  • Botu, Venkatesh; Ramprasad, Rampi
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24836

Understanding kernel ridge regression: Common behaviors from simple functions to density functionals
journal, May 2015

  • Vu, Kevin; Snyder, John C.; Li, Li
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24939

Conducting Boron Sheets Formed by the Reconstruction of the α -Boron (111) Surface
journal, September 2013


Pathways towards ferroelectricity in hafnia
journal, August 2014


Inhomogeneous Electron Gas
journal, November 1964


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Chemical accuracy for the van der Waals density functional
journal, December 2009

  • Klimeš, Jiří; Bowler, David R.; Michaelides, Angelos
  • Journal of Physics: Condensed Matter, Vol. 22, Issue 2
  • DOI: 10.1088/0953-8984/22/2/022201

Projector augmented-wave method
journal, December 1994


Phonons and related crystal properties from density-functional perturbation theory
journal, July 2001

  • Baroni, Stefano; de Gironcoli, Stefano; Dal Corso, Andrea
  • Reviews of Modern Physics, Vol. 73, Issue 2
  • DOI: 10.1103/RevModPhys.73.515

Polarization-Based Calculation of the Dielectric Tensor of Polar Crystals
journal, November 1997

  • Bernardini, Fabio; Fiorentini, Vincenzo; Vanderbilt, David
  • Physical Review Letters, Vol. 79, Issue 20
  • DOI: 10.1103/PhysRevLett.79.3958

Phonons and lattice dielectric properties of zirconia
journal, January 2002


Hybrid functionals based on a screened Coulomb potential
journal, May 2003

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564060

Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional
journal, November 2005

  • Heyd, Jochen; Peralta, Juan E.; Scuseria, Gustavo E.
  • The Journal of Chemical Physics, Vol. 123, Issue 17
  • DOI: 10.1063/1.2085170

    Works referencing / citing this record:

    A polymer dataset for accelerated property prediction and design
    journal, March 2016

    • Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho
    • Scientific Data, Vol. 3, Issue 1
    • DOI: 10.1038/sdata.2016.12

    A hybrid organic-inorganic perovskite dataset
    journal, May 2017

    • Kim, Chiho; Huan, Tran Doan; Krishnan, Sridevi
    • Scientific Data, Vol. 4, Issue 1
    • DOI: 10.1038/sdata.2017.57

    Challenges and opportunities of polymer design with machine learning and high throughput experimentation
    journal, May 2019

    • Kumar, Jatin N.; Li, Qianxiao; Jun, Ye
    • MRS Communications, Vol. 9, Issue 02
    • DOI: 10.1557/mrc.2019.54

    Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm
    journal, June 2019