DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

Abstract

Abstract Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H 2 SO 4 ) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H 2 SO 4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI‐APi‐TOF (Chemical Ionization‐Atmospheric Pressure interface‐Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI‐APi‐TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H 2 SO 4 , contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H 2 SO 4more » cluster distribution compared to binary (H 2 SO 4 ‐H 2 O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H 2 SO 4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self‐contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.« less

Authors:
 [1];  [2];  [1];  [3];  [4];  [5];  [3];  [3];  [6];  [7];  [8];  [9];  [3];  [5];  [10];  [11];  [3];  [3];  [1];  [12] more »;  [6];  [3];  [3];  [13];  [1];  [3];  [14];  [15];  [6];  [16];  [17];  [18];  [1];  [3];  [6];  [19];  [3];  [3];  [20];  [1] « less
  1. Institute for Atmospheric and Environmental Sciences Goethe University Frankfurt am Main Frankfurt am Main Germany
  2. CERN Geneva Switzerland
  3. Department of Physics University of Helsinki Helsinki Finland
  4. Laboratory of Atmospheric Chemistry Paul Scherrer Institute Villigen Switzerland, Institute for Atmospheric and Climate Science ETH Zurich Zurich Switzerland
  5. Institute for Ion Physics and Applied Physics University of Innsbruck Innsbruck Austria
  6. Laboratory of Atmospheric Chemistry Paul Scherrer Institute Villigen Switzerland
  7. Center for Atmospheric Particle Studies Carnegie Mellon University Pittsburgh Pennsylvania USA
  8. Kuopio Unit Finnish Meteorological Institute Kuopio Finland, School of Earth and Environment University of Leeds Leeds UK
  9. Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena California USA
  10. Department of Physics University of Helsinki Helsinki Finland, Department of Applied Physics University of Eastern Finland Kuopio Finland
  11. Department of Applied Physics University of Eastern Finland Kuopio Finland
  12. Department of Physics University of Helsinki Helsinki Finland, Kuopio Unit Finnish Meteorological Institute Kuopio Finland
  13. Department of Physics University of Helsinki Helsinki Finland, Department of Atmospheric Sciences University of Washington Seattle Washington USA
  14. Department of Applied Physics University of Eastern Finland Kuopio Finland, Department of Chemistry University of California Irvine California USA
  15. CENTRA‐SIM University of Lisbon and University of Beira Interior Lisbon Portugal
  16. Leibniz Institute for Tropospheric Research Leipzig Germany
  17. Department of Applied Physics University of Eastern Finland Kuopio Finland, Department of Environmental Science University of Eastern Finland Kuopio Finland
  18. Faculty of Physics University of Vienna Vienna Austria
  19. Institute for Atmospheric and Environmental Sciences Goethe University Frankfurt am Main Frankfurt am Main Germany, CERN Geneva Switzerland
  20. Department of Physics University of Helsinki Helsinki Finland, Aerodyne Research, Inc. Billerica Massachusetts USA
Publication Date:
Research Org.:
Univ. of California, Irvine, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1244106
Alternate Identifier(s):
OSTI ID: 1244107; OSTI ID: 1623443
Grant/Contract Number:  
DE‐SC0014469; SC0014469
Resource Type:
Published Article
Journal Name:
Journal of Geophysical Research: Atmospheres
Additional Journal Information:
Journal Name: Journal of Geophysical Research: Atmospheres Journal Volume: 121 Journal Issue: 6; Journal ID: ISSN 2169-897X
Publisher:
American Geophysical Union (AGU)
Country of Publication:
United States
Language:
English
Subject:
Meteorology & Atmospheric Sciences; CLOUD experiment; nucleation; Chemical Ionization‐Atmospheric Pressure interface‐Time Of Flight

Citation Formats

Rondo, L., Ehrhart, S., Kürten, A., Adamov, A., Bianchi, F., Breitenlechner, M., Duplissy, J., Franchin, A., Dommen, J., Donahue, N. M., Dunne, E. M., Flagan, R. C., Hakala, J., Hansel, A., Keskinen, H., Kim, J., Jokinen, T., Lehtipalo, K., Leiminger, M., Praplan, A., Riccobono, F., Rissanen, M. P., Sarnela, N., Schobesberger, S., Simon, M., Sipilä, M., Smith, J. N., Tomé, A., Tröstl, J., Tsagkogeorgas, G., Vaattovaara, P., Winkler, P. M., Williamson, C., Wimmer, D., Baltensperger, U., Kirkby, J., Kulmala, M., Petäjä, T., Worsnop, D. R., and Curtius, J. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry. United States: N. p., 2016. Web. doi:10.1002/2015JD023868.
Rondo, L., Ehrhart, S., Kürten, A., Adamov, A., Bianchi, F., Breitenlechner, M., Duplissy, J., Franchin, A., Dommen, J., Donahue, N. M., Dunne, E. M., Flagan, R. C., Hakala, J., Hansel, A., Keskinen, H., Kim, J., Jokinen, T., Lehtipalo, K., Leiminger, M., Praplan, A., Riccobono, F., Rissanen, M. P., Sarnela, N., Schobesberger, S., Simon, M., Sipilä, M., Smith, J. N., Tomé, A., Tröstl, J., Tsagkogeorgas, G., Vaattovaara, P., Winkler, P. M., Williamson, C., Wimmer, D., Baltensperger, U., Kirkby, J., Kulmala, M., Petäjä, T., Worsnop, D. R., & Curtius, J. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry. United States. https://doi.org/10.1002/2015JD023868
Rondo, L., Ehrhart, S., Kürten, A., Adamov, A., Bianchi, F., Breitenlechner, M., Duplissy, J., Franchin, A., Dommen, J., Donahue, N. M., Dunne, E. M., Flagan, R. C., Hakala, J., Hansel, A., Keskinen, H., Kim, J., Jokinen, T., Lehtipalo, K., Leiminger, M., Praplan, A., Riccobono, F., Rissanen, M. P., Sarnela, N., Schobesberger, S., Simon, M., Sipilä, M., Smith, J. N., Tomé, A., Tröstl, J., Tsagkogeorgas, G., Vaattovaara, P., Winkler, P. M., Williamson, C., Wimmer, D., Baltensperger, U., Kirkby, J., Kulmala, M., Petäjä, T., Worsnop, D. R., and Curtius, J. Thu . "Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry". United States. https://doi.org/10.1002/2015JD023868.
@article{osti_1244106,
title = {Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry},
author = {Rondo, L. and Ehrhart, S. and Kürten, A. and Adamov, A. and Bianchi, F. and Breitenlechner, M. and Duplissy, J. and Franchin, A. and Dommen, J. and Donahue, N. M. and Dunne, E. M. and Flagan, R. C. and Hakala, J. and Hansel, A. and Keskinen, H. and Kim, J. and Jokinen, T. and Lehtipalo, K. and Leiminger, M. and Praplan, A. and Riccobono, F. and Rissanen, M. P. and Sarnela, N. and Schobesberger, S. and Simon, M. and Sipilä, M. and Smith, J. N. and Tomé, A. and Tröstl, J. and Tsagkogeorgas, G. and Vaattovaara, P. and Winkler, P. M. and Williamson, C. and Wimmer, D. and Baltensperger, U. and Kirkby, J. and Kulmala, M. and Petäjä, T. and Worsnop, D. R. and Curtius, J.},
abstractNote = {Abstract Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H 2 SO 4 ) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H 2 SO 4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI‐APi‐TOF (Chemical Ionization‐Atmospheric Pressure interface‐Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI‐APi‐TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H 2 SO 4 , contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H 2 SO 4 cluster distribution compared to binary (H 2 SO 4 ‐H 2 O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H 2 SO 4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self‐contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.},
doi = {10.1002/2015JD023868},
journal = {Journal of Geophysical Research: Atmospheres},
number = 6,
volume = 121,
place = {United States},
year = {Thu Mar 24 00:00:00 EDT 2016},
month = {Thu Mar 24 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/2015JD023868

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Example of a measurement of the sulfuric acid concentration (displayed with red color for both 5 s raw data and 1min averaged data) a variation of the UV light (10% to 100%UV light aperture) for the pure H2SO4-H2O binary system. (b) Comparison of the expected H2SO4 (ASADmore » model and UV light dependency) and the average measured H2SO4 concentration for different UV light intensities applied in the chamber after equilibration of the H2SO4 concentration to the new settings. The displayed CIMS sulfuric acid concentrations include 1σ total errors, while the systematic scale uncertainty is a factor of 2. The averaged measured concentrations are taken after H2SO4 equilibrium is established within 650 ± 33 s, which is given from the sulfuric acid lifetime fit as shown in Figure 1a.« less

Save / Share:

Works referenced in this record:

Evidence for the role of organics in aerosol particle formation under atmospheric conditions
journal, January 2010

  • Metzger, A.; Verheggen, B.; Dommen, J.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 15
  • DOI: 10.1073/pnas.0911330107

Insight into Acid–Base Nucleation Experiments by Comparison of the Chemical Composition of Positive, Negative, and Neutral Clusters
journal, November 2014

  • Bianchi, Federico; Praplan, Arnaud P.; Sarnela, Nina
  • Environmental Science & Technology, Vol. 48, Issue 23
  • DOI: 10.1021/es502380b

Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer
journal, October 2012

  • Chen, M.; Titcombe, M.; Jiang, J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 46
  • DOI: 10.1073/pnas.1210285109

Sulfuric acid and OH concentrations in a boreal forest site
journal, January 2009

  • Petäjä, T.; Mauldin, III, R. L.; Kosciuch, E.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 19
  • DOI: 10.5194/acp-9-7435-2009

Effects of boundary layer particle formation on cloud droplet number and changes in cloud albedo from 1850 to 2000
journal, January 2010

  • Merikanto, J.; Spracklen, D. V.; Pringle, K. J.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 2
  • DOI: 10.5194/acp-10-695-2010

Turbulent deposition and gravitational sedimentation of an aerosol in a vessel of arbitrary shape
journal, January 1981


Atmospheric New Particle Formation Enhanced by Organic Acids
journal, June 2004


Numerical simulations of mixing conditions and aerosol dynamics in the CERN CLOUD chamber
journal, January 2012

  • Voigtländer, J.; Duplissy, J.; Rondo, L.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 4
  • DOI: 10.5194/acp-12-2205-2012

Cluster activation theory as an explanation of the linear dependence between formation rate of 3nm particles and sulphuric acid concentration
journal, January 2006

  • Kulmala, M.; Lehtinen, K. E. J.; Laaksonen, A.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 3
  • DOI: 10.5194/acp-6-787-2006

Amine permeation sources characterized with acid neutralization and sensitivities of an amine mass spectrometer
journal, January 2014

  • Freshour, N. A.; Carlson, K. K.; Melka, Y. A.
  • Atmospheric Measurement Techniques, Vol. 7, Issue 10
  • DOI: 10.5194/amt-7-3611-2014

Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and Hyytiälä
journal, January 2007

  • Riipinen, I.; Sihto, S. -L.; Kulmala, M.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 8
  • DOI: 10.5194/acp-7-1899-2007

Measurement of the gas phase concentration of H 2 SO 4 and methane sulfonic acid and estimates of H 2 SO 4 production and loss in the atmosphere
journal, May 1993

  • Eisele, F. L.; Tanner, D. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 98, Issue D5
  • DOI: 10.1029/93JD00031

Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia
journal, January 2008

  • Kurtén, T.; Loukonen, V.; Vehkamäki, H.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 14
  • DOI: 10.5194/acp-8-4095-2008

Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles
journal, May 2014


The ASAD atmospheric chemistry integration package and chemical reaction database
journal, October 1997


Results from the CERN pilot CLOUD experiment
journal, January 2010

  • Duplissy, J.; Enghoff, M. B.; Aplin, K. L.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 4
  • DOI: 10.5194/acp-10-1635-2010

Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions
journal, October 2014

  • Kürten, Andreas; Jokinen, Tuija; Simon, Mario
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 42
  • DOI: 10.1073/pnas.1404853111

Effect of Hydration and Base Contaminants on Sulfuric Acid Diffusion Measurement: A Computational Study
journal, May 2014

  • Olenius, Tinja; Kurtén, Theo; Kupiainen-Määttä, Oona
  • Aerosol Science and Technology, Vol. 48, Issue 6
  • DOI: 10.1080/02786826.2014.903556

Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation
journal, August 2011

  • Kirkby, Jasper; Curtius, Joachim; Almeida, João
  • Nature, Vol. 476, Issue 7361
  • DOI: 10.1038/nature10343

Dimethylamine and ammonia measurements with ion chromatography during the CLOUD4 campaign
journal, January 2012

  • Praplan, A. P.; Bianchi, F.; Dommen, J.
  • Atmospheric Measurement Techniques, Vol. 5, Issue 9
  • DOI: 10.5194/amt-5-2161-2012

Electrical charging changes the composition of sulfuric acid–ammonia/dimethylamine clusters
journal, January 2014

  • Ortega, I. K.; Olenius, T.; Kupiainen-Määttä, O.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 15
  • DOI: 10.5194/acp-14-7995-2014

Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules
journal, October 2013

  • Schobesberger, S.; Junninen, H.; Bianchi, F.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 43
  • DOI: 10.1073/pnas.1306973110

Direct Observations of Atmospheric Aerosol Nucleation
journal, February 2013


Effect of ions on sulfuric acid-water binary particle formation: 2. Experimental data and comparison with QC-normalized classical nucleation theory: BINARY PARTICLE FORMATION EXPERIMENTS
journal, February 2016

  • Duplissy, J.; Merikanto, J.; Franchin, A.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 4
  • DOI: 10.1002/2015JD023539

Formation and growth rates of ultrafine atmospheric particles: a review of observations
journal, March 2004


Total sulfate vs. sulfuric acid monomer concenterations in nucleation studies
journal, January 2015


Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth
journal, January 2012

  • Riccobono, F.; Rondo, L.; Sipilä, M.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 20
  • DOI: 10.5194/acp-12-9427-2012

Physiochemical Properties of Alkylaminium Sulfates: Hygroscopicity, Thermostability, and Density
journal, March 2012

  • Qiu, Chong; Zhang, Renyi
  • Environmental Science & Technology, Vol. 46, Issue 8
  • DOI: 10.1021/es3004377

The effect of H 2 SO 4 – amine clustering on chemical ionization mass spectrometry (CIMS) measurements of gas-phase sulfuric acid
journal, January 2011

  • Kurtén, T.; Petäjä, T.; Smith, J.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 6
  • DOI: 10.5194/acp-11-3007-2011

CIMS Sulfuric Acid Detection Efficiency Enhanced by Amines Due to Higher Dipole Moments: A Computational Study
journal, December 2013

  • Kupiainen-Määttä, Oona; Olenius, Tinja; Kurtén, Theo
  • The Journal of Physical Chemistry A, Vol. 117, Issue 51
  • DOI: 10.1021/jp4049764

Atmospheric ion-induced nucleation of sulfuric acid and water
journal, January 2004


Influence of aerosol lifetime on the interpretation of nucleation experiments with respect to the first nucleation theorem
journal, January 2013


Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry
journal, January 2011

  • Kürten, A.; Rondo, L.; Ehrhart, S.
  • Atmospheric Measurement Techniques, Vol. 4, Issue 3
  • DOI: 10.5194/amt-4-437-2011

Atmospheric amines – Part II. Thermodynamic properties and gas/particle partitioning
journal, January 2011


From quantum chemical formation free energies to evaporation rates
journal, January 2012

  • Ortega, I. K.; Kupiainen, O.; Kurtén, T.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 1
  • DOI: 10.5194/acp-12-225-2012

On-line determination of ammonia at low pptv mixing ratios in the CLOUD chamber
journal, January 2012

  • Bianchi, F.; Dommen, J.; Mathot, S.
  • Atmospheric Measurement Techniques Discussions, Vol. 5, Issue 2
  • DOI: 10.5194/amtd-5-2111-2012

Laboratory-measured H 2 SO 4 -H 2 O-NH 3 ternary homogeneous nucleation rates: Initial observations : H
journal, August 2009

  • Benson, David R.; Erupe, Mark E.; Lee, Shan-Hu
  • Geophysical Research Letters, Vol. 36, Issue 15
  • DOI: 10.1029/2009GL038728

Atmospheric amines – Part I. A review
journal, January 2011


Ambient Pressure Proton Transfer Mass Spectrometry: Detection of Amines and Ammonia
journal, October 2011

  • Hanson, D. R.; McMurry, P. H.; Jiang, J.
  • Environmental Science & Technology, Vol. 45, Issue 20
  • DOI: 10.1021/es201819a

Chemical ionization mass spectrometer for long-term measurements of atmospheric OH and H2SO4
journal, October 2000

  • Berresheim, H.; Elste, T.; Plass-Dülmer, C.
  • International Journal of Mass Spectrometry, Vol. 202, Issue 1-3
  • DOI: 10.1016/S1387-3806(00)00233-5

A fibre-optic UV system for H2SO4 production in aerosol chambers causing minimal thermal effects
journal, August 2011


Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine
journal, June 2014

  • Jen, Coty N.; McMurry, Peter H.; Hanson, David R.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 12
  • DOI: 10.1002/2014JD021592

Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere
journal, October 2013

  • Almeida, João; Schobesberger, Siegfried; Kürten, Andreas
  • Nature, Vol. 502, Issue 7471
  • DOI: 10.1038/nature12663

Effect of ions on the measurement of sulfuric acid in the CLOUD experiment at CERN
journal, January 2014

  • Rondo, L.; Kürten, A.; Ehrhart, S.
  • Atmospheric Measurement Techniques, Vol. 7, Issue 11
  • DOI: 10.5194/amt-7-3849-2014

Diffusion of H 2 SO 4 in Humidified Nitrogen:  Hydrated H 2 SO 4
journal, March 2000

  • Hanson, D. R.; Eisele, F.
  • The Journal of Physical Chemistry A, Vol. 104, Issue 8
  • DOI: 10.1021/jp993622j

Calibration of a Chemical Ionization Mass Spectrometer for the Measurement of Gaseous Sulfuric Acid
journal, February 2012

  • Kürten, Andreas; Rondo, Linda; Ehrhart, Sebastian
  • The Journal of Physical Chemistry A, Vol. 116, Issue 24
  • DOI: 10.1021/jp212123n

Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF
journal, January 2012

  • Jokinen, T.; Sipilä, M.; Junninen, H.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 9
  • DOI: 10.5194/acp-12-4117-2012

Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water – a computational study
journal, January 2010

  • Loukonen, V.; Kurtén, T.; Ortega, I. K.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 10
  • DOI: 10.5194/acp-10-4961-2010

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.