DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nucleation Rate Analysis of Methane Hydrate from Molecular Dynamics Simulations

Abstract

Clathrate hydrates are solid crystalline structures most commonly formed from solutions that have nucleated to form a mixed solid composed of water and gas. Understanding the mechanism of clathrate hydrate nucleation is essential to grasp the fundamental chemistry of these complex structures and their applications. Molecular dynamics (MD) simulation is an ideal method to study nucleation at the molecular level because the size of the critical nucleus and formation rate occur on the nano scale. Moreover, various analysis methods for nucleation have been developed through MD to analyze nucleation. In particular, the mean first-passage time (MFPT) and survival probability (SP) methods have proven to be effective in procuring the nucleation rate and critical nucleus size for monatomic systems. This study assesses the MFPT and SP methods, previously used for monatomic systems, when applied to analyzing clathrate hydrate nucleation. Because clathrate hydrate nucleation is relatively difficult to observe in MD simulations (due to its high free energy barrier), these methods have yet to be applied to clathrate hydrate systems. In this study, we have analyzed the nucleation rate and critical nucleus size of methane hydrate using MFPT and SP methods from data generated by MD simulations at 255 K and 50more » MPa. MFPT was modified for clathrate hydrate from the original version by adding the maximum likelihood estimate and growth effect term. The nucleation rates were calculated by MFPT and SP methods and are within 5%; the critical nucleus size estimated by the MFPT method was 50% higher, than values obtained through other more rigorous but computationally expensive estimates. These methods can also be extended to the analysis of other clathrate hydrates.« less

Authors:
 [1];  [2];  [1];  [3];  [3];  [1];  [2];
  1. Keio Univ., Yokohama (Japan)
  2. Colorado School of Mines, Golden, CO (United States)
  3. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1242024
Report Number(s):
NREL/JA-5100-64933
Journal ID: ISSN 1359-6640
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Faraday Discussions
Additional Journal Information:
Journal Volume: 179; Related Information: Faraday Discussions; Journal ID: ISSN 1359-6640
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; molecular dynamics (MD) simulation; mean first-passage time (MFPT); survival probability (SP); clathrate hydrate nucleation

Citation Formats

Yuhara, Daisuke, Barnes, Brian C., Suh, Donguk, Knott, Brandon C., Beckham, Gregg T., Yasuoka, Kenji, Wu, David T., and Amadeu K. Sum. Nucleation Rate Analysis of Methane Hydrate from Molecular Dynamics Simulations. United States: N. p., 2015. Web. doi:10.1039/C4FD00219A.
Yuhara, Daisuke, Barnes, Brian C., Suh, Donguk, Knott, Brandon C., Beckham, Gregg T., Yasuoka, Kenji, Wu, David T., & Amadeu K. Sum. Nucleation Rate Analysis of Methane Hydrate from Molecular Dynamics Simulations. United States. https://doi.org/10.1039/C4FD00219A
Yuhara, Daisuke, Barnes, Brian C., Suh, Donguk, Knott, Brandon C., Beckham, Gregg T., Yasuoka, Kenji, Wu, David T., and Amadeu K. Sum. Tue . "Nucleation Rate Analysis of Methane Hydrate from Molecular Dynamics Simulations". United States. https://doi.org/10.1039/C4FD00219A. https://www.osti.gov/servlets/purl/1242024.
@article{osti_1242024,
title = {Nucleation Rate Analysis of Methane Hydrate from Molecular Dynamics Simulations},
author = {Yuhara, Daisuke and Barnes, Brian C. and Suh, Donguk and Knott, Brandon C. and Beckham, Gregg T. and Yasuoka, Kenji and Wu, David T. and Amadeu K. Sum},
abstractNote = {Clathrate hydrates are solid crystalline structures most commonly formed from solutions that have nucleated to form a mixed solid composed of water and gas. Understanding the mechanism of clathrate hydrate nucleation is essential to grasp the fundamental chemistry of these complex structures and their applications. Molecular dynamics (MD) simulation is an ideal method to study nucleation at the molecular level because the size of the critical nucleus and formation rate occur on the nano scale. Moreover, various analysis methods for nucleation have been developed through MD to analyze nucleation. In particular, the mean first-passage time (MFPT) and survival probability (SP) methods have proven to be effective in procuring the nucleation rate and critical nucleus size for monatomic systems. This study assesses the MFPT and SP methods, previously used for monatomic systems, when applied to analyzing clathrate hydrate nucleation. Because clathrate hydrate nucleation is relatively difficult to observe in MD simulations (due to its high free energy barrier), these methods have yet to be applied to clathrate hydrate systems. In this study, we have analyzed the nucleation rate and critical nucleus size of methane hydrate using MFPT and SP methods from data generated by MD simulations at 255 K and 50 MPa. MFPT was modified for clathrate hydrate from the original version by adding the maximum likelihood estimate and growth effect term. The nucleation rates were calculated by MFPT and SP methods and are within 5%; the critical nucleus size estimated by the MFPT method was 50% higher, than values obtained through other more rigorous but computationally expensive estimates. These methods can also be extended to the analysis of other clathrate hydrates.},
doi = {10.1039/C4FD00219A},
journal = {Faraday Discussions},
number = ,
volume = 179,
place = {United States},
year = {Tue Jan 06 00:00:00 EST 2015},
month = {Tue Jan 06 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 47 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

On the transition coordinate for protein folding
journal, January 1998

  • Du, Rose; Pande, Vijay S.; Grosberg, Alexander Yu.
  • The Journal of Chemical Physics, Vol. 108, Issue 1
  • DOI: 10.1063/1.475393

Clathrate Hydrates of Natural Gases
book, September 2007


Extended study of molecular dynamics simulation of homogeneous vapor-liquid nucleation of water
journal, December 2007

  • Matsubara, Hiroki; Koishi, Takahiro; Ebisuzaki, Toshikazu
  • The Journal of Chemical Physics, Vol. 127, Issue 21
  • DOI: 10.1063/1.2803899

Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates
journal, August 2006

  • Park, Y.; Kim, D. -Y.; Lee, J. -W.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 34
  • DOI: 10.1073/pnas.0602251103

Voronoi Tessellation Analysis of Clathrate Hydrates
journal, September 2012

  • Chakraborty, Somendra N.; Grzelak, Eric M.; Barnes, Brian C.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 37
  • DOI: 10.1021/jp304612f

Evaluating nucleation rates in direct simulations
journal, February 2009

  • Chkonia, Guram; Wölk, Judith; Strey, Reinhard
  • The Journal of Chemical Physics, Vol. 130, Issue 6
  • DOI: 10.1063/1.3072794

Microsecond Simulations of Spontaneous Methane Hydrate Nucleation and Growth
journal, October 2009


Molecular Modeling of the Dissociation of Methane Hydrate in Contact with a Silica Surface
journal, March 2012

  • Bagherzadeh, S. Alireza; Englezos, Peter; Alavi, Saman
  • The Journal of Physical Chemistry B, Vol. 116, Issue 10
  • DOI: 10.1021/jp2086544

GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation
journal, February 2008

  • Hess, Berk; Kutzner, Carsten; van der Spoel, David
  • Journal of Chemical Theory and Computation, Vol. 4, Issue 3
  • DOI: 10.1021/ct700301q

Role of Guest Molecules on the Hydrate Growth at Vapor-Liquid Interfaces
journal, February 2013

  • Bai, Dongsheng; Liu, Bei; Chen, Guangjin
  • AIChE Journal, Vol. 59, Issue 7
  • DOI: 10.1002/aic.14011

Reaction Coordinate of Incipient Methane Clathrate Hydrate Nucleation
journal, November 2014

  • Barnes, Brian C.; Knott, Brandon C.; Beckham, Gregg T.
  • The Journal of Physical Chemistry B, Vol. 118, Issue 46
  • DOI: 10.1021/jp507959q

Computer simulation study of gas–liquid nucleation in a Lennard-Jones system
journal, December 1998

  • ten Wolde, Pieter Rein; Frenkel, Daan
  • The Journal of Chemical Physics, Vol. 109, Issue 22
  • DOI: 10.1063/1.477658

New method to analyze simulations of activated processes
journal, April 2007

  • Wedekind, Jan; Strey, Reinhard; Reguera, David
  • The Journal of Chemical Physics, Vol. 126, Issue 13
  • DOI: 10.1063/1.2713401

Molecular dynamics study of thermal-driven methane hydrate dissociation
journal, August 2009

  • English, Niall J.; Phelan, Gráinne M.
  • The Journal of Chemical Physics, Vol. 131, Issue 7
  • DOI: 10.1063/1.3211089

Topological building blocks of hydrogen bond network in water
journal, October 2007

  • Matsumoto, M.; Baba, A.; Ohmine, I.
  • The Journal of Chemical Physics, Vol. 127, Issue 13
  • DOI: 10.1063/1.2772627

Explorations of gas hydrate crystal growth by molecular simulations
journal, July 2010


Molecular dynamics of homogeneous nucleation in the vapor phase of Lennard-Jones. III. Effect of carrier gas pressure
journal, March 2007

  • Yasuoka, Kenji; Zeng, X. C.
  • The Journal of Chemical Physics, Vol. 126, Issue 12
  • DOI: 10.1063/1.2712436

Reaction coordinates of biomolecular isomerization
journal, May 2000

  • Bolhuis, P. G.; Dellago, C.; Chandler, D.
  • Proceedings of the National Academy of Sciences, Vol. 97, Issue 11
  • DOI: 10.1073/pnas.100127697

Nanoparticle Growth Analysis by Molecular Dynamics: Spherical Seed
journal, September 2011

  • Suh, Donguk; Yasuoka, Kenji
  • The Journal of Physical Chemistry B, Vol. 115, Issue 36
  • DOI: 10.1021/jp201964h

Note: A simple correlation to locate the three phase coexistence line in methane-hydrate simulations
journal, February 2013

  • Conde, M. M.; Vega, C.
  • The Journal of Chemical Physics, Vol. 138, Issue 5
  • DOI: 10.1063/1.4790647

Modelling of hydrate formation kinetics: State-of-the-art and future directions
journal, April 2008


Homogeneous Nucleation of Methane Hydrates: Unrealistic under Realistic Conditions
journal, November 2012

  • Knott, Brandon C.; Molinero, Valeria; Doherty, Michael F.
  • Journal of the American Chemical Society, Vol. 134, Issue 48
  • DOI: 10.1021/ja309117d

Statistical Study of Clathrate-Hydrate Nucleation in a Water/Hydrochlorofluorocarbon System:  Search for the Nature of the “Memory Effect”
journal, June 2003

  • Ohmura, Ryo; Ogawa, Mikio; Yasuoka, Kenji
  • The Journal of Physical Chemistry B, Vol. 107, Issue 22
  • DOI: 10.1021/jp027094e

Finite-size effects in simulations of nucleation
journal, December 2006

  • Wedekind, Jan; Reguera, David; Strey, Reinhard
  • The Journal of Chemical Physics, Vol. 125, Issue 21
  • DOI: 10.1063/1.2402167

The cages, dynamics, and structuring of incipient methane clathrate hydrates
journal, January 2011

  • Walsh, Matthew R.; Rainey, J. Daniel; Lafond, Patrick G.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 44
  • DOI: 10.1039/c1cp21899a

Four-Body Cooperativity in Hydrophonic Association of Methane
journal, April 2010

  • Matsumoto, Masakazu
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 10
  • DOI: 10.1021/jz100340e

Optimized intermolecular potential functions for liquid hydrocarbons
journal, October 1984

  • Jorgensen, William L.; Madura, Jeffry D.; Swenson, Carol J.
  • Journal of the American Chemical Society, Vol. 106, Issue 22
  • DOI: 10.1021/ja00334a030

A unified formulation of the constant temperature molecular dynamics methods
journal, July 1984

  • Nosé, Shuichi
  • The Journal of Chemical Physics, Vol. 81, Issue 1
  • DOI: 10.1063/1.447334

Melting and superheating of sI methane hydrate: Molecular dynamics study
journal, January 2012

  • Smirnov, Grigory S.; Stegailov, Vladimir V.
  • The Journal of Chemical Physics, Vol. 136, Issue 4
  • DOI: 10.1063/1.3679860

Gas hydrate nucleation and cage formation at a water/methane interface
journal, January 2008

  • Hawtin, Robert W.; Quigley, David; Rodger, P. Mark
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 32
  • DOI: 10.1039/b807455k

Homogeneous Nucleation of Methane Hydrate in Microsecond Molecular Dynamics Simulations
journal, September 2012

  • Sarupria, Sapna; Debenedetti, Pablo G.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 20
  • DOI: 10.1021/jz3012113

Fundamental principles and applications of natural gas hydrates
journal, November 2003


Thermodynamic Stability and Growth of Guest-Free Clathrate Hydrates: A Low-Density Crystal Phase of Water
journal, July 2009

  • Jacobson, Liam C.; Hujo, Waldemar; Molinero, Valeria
  • The Journal of Physical Chemistry B, Vol. 113, Issue 30
  • DOI: 10.1021/jp903439a

Structure of the Clathrate/Solution Interface and Mechanism of Cross-Nucleation of Clathrate Hydrates
journal, September 2012

  • Nguyen, Andrew H.; Jacobson, Liam C.; Molinero, Valeria
  • The Journal of Physical Chemistry C, Vol. 116, Issue 37
  • DOI: 10.1021/jp305468s

Induced Charge Density and Thin Liquid Film at Hydrate/Methane Gas Interfaces
journal, October 2014

  • Jiménez-Ángeles, Felipe; Firoozabadi, Abbas
  • The Journal of Physical Chemistry C, Vol. 118, Issue 45
  • DOI: 10.1021/jp507160s

A potential model for the study of ices and amorphous water: TIP4P/Ice
journal, June 2005

  • Abascal, J. L. F.; Sanz, E.; García Fernández, R.
  • The Journal of Chemical Physics, Vol. 122, Issue 23
  • DOI: 10.1063/1.1931662

Methane Hydrate Nucleation Rates from Molecular Dynamics Simulations: Effects of Aqueous Methane Concentration, Interfacial Curvature, and System Size
journal, October 2011

  • Walsh, Matthew R.; Beckham, Gregg T.; Koh, Carolyn A.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 43
  • DOI: 10.1021/jp206483q

Preliminary report on the commercial viability of gas production from natural gas hydrates
journal, September 2009


Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems
journal, June 1993

  • Darden, Tom; York, Darrin; Pedersen, Lee
  • The Journal of Chemical Physics, Vol. 98, Issue 12
  • DOI: 10.1063/1.464397

Nucleation Pathways of Clathrate Hydrates: Effect of Guest Size and Solubility
journal, October 2010

  • Jacobson, Liam C.; Hujo, Waldemar; Molinero, Valeria
  • The Journal of Physical Chemistry B, Vol. 114, Issue 43
  • DOI: 10.1021/jp107269q

Kinetic Reconstruction of the Free-Energy Landscape
journal, September 2008

  • Wedekind, Jan; Reguera, David
  • The Journal of Physical Chemistry B, Vol. 112, Issue 35
  • DOI: 10.1021/jp804014h

Kinetic Pathways of Ion Pair Dissociation in Water
journal, May 1999

  • Geissler, Phillip L.; Dellago, Christoph; Chandler, David
  • The Journal of Physical Chemistry B, Vol. 103, Issue 18
  • DOI: 10.1021/jp984837g

Amorphous Precursors in the Nucleation of Clathrate Hydrates
journal, July 2010

  • Jacobson, Liam C.; Hujo, Waldemar; Molinero, Valeria
  • Journal of the American Chemical Society, Vol. 132, Issue 33
  • DOI: 10.1021/ja1051445

Nanoparticle Growth Analysis by Molecular Dynamics: Cubic Seed
journal, December 2012

  • Suh, Donguk; Yasuoka, Kenji
  • The Journal of Physical Chemistry B, Vol. 116, Issue 50
  • DOI: 10.1021/jp3044658

Nucleation of Methane Hydrates at Moderate Subcooling by Molecular Dynamics Simulations
journal, May 2014

  • Jiménez-Ángeles, Felipe; Firoozabadi, Abbas
  • The Journal of Physical Chemistry C, Vol. 118, Issue 21
  • DOI: 10.1021/jp5002012

Advances in molecular simulations of clathrate hydrates
journal, May 2013


Molecular dynamics of homogeneous nucleation in the vapor phase. II. Water
journal, November 1998

  • Yasuoka, Kenji; Matsumoto, Mitsuhiro
  • The Journal of Chemical Physics, Vol. 109, Issue 19
  • DOI: 10.1063/1.477510

Polymorphic transitions in single crystals: A new molecular dynamics method
journal, December 1981

  • Parrinello, M.; Rahman, A.
  • Journal of Applied Physics, Vol. 52, Issue 12
  • DOI: 10.1063/1.328693

Nucleation and control of clathrate hydrates: insights from simulation
journal, January 2007

  • Moon, C.; Hawtin, R. W.; Rodger, P. Mark
  • Faraday Discussions, Vol. 136
  • DOI: 10.1039/b618194p

Molecular Simulations of Methane Hydrate Nucleation
journal, February 2010


Canonical dynamics: Equilibrium phase-space distributions
journal, March 1985


Stable Low-Pressure Hydrogen Clusters Stored in a Binary Clathrate Hydrate
journal, October 2004


Molecular Dynamics Simulation of Homogeneous Crystal Nucleation in Polyethylene
journal, May 2013

  • Yi, Peng; Locker, C. Rebecca; Rutledge, Gregory C.
  • Macromolecules, Vol. 46, Issue 11
  • DOI: 10.1021/ma4004659

Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models
journal, October 1992

  • Miyamoto, Shuichi; Kollman, Peter A.
  • Journal of Computational Chemistry, Vol. 13, Issue 8
  • DOI: 10.1002/jcc.540130805

Is Gas Hydrate Energy Within Reach?
journal, August 2009


Liquid–vapor nucleation simulation of Lennard-Jones fluid by molecular dynamics method
journal, July 2008


Comparison of heterogeneous and homogeneous bubble nucleation using molecular simulations
journal, February 2007


Molecular dynamics of homogeneous nucleation in the vapor phase. I. Lennard-Jones fluid
journal, November 1998

  • Yasuoka, Kenji; Matsumoto, Mitsuhiro
  • The Journal of Chemical Physics, Vol. 109, Issue 19
  • DOI: 10.1063/1.477509

A smooth particle mesh Ewald method
journal, November 1995

  • Essmann, Ulrich; Perera, Lalith; Berkowitz, Max L.
  • The Journal of Chemical Physics, Vol. 103, Issue 19
  • DOI: 10.1063/1.470117

Can Amorphous Nuclei Grow Crystalline Clathrates? The Size and Crystallinity of Critical Clathrate Nuclei
journal, April 2011

  • Jacobson, Liam C.; Molinero, Valeria
  • Journal of the American Chemical Society, Vol. 133, Issue 16
  • DOI: 10.1021/ja201403q

Massively parallel molecular dynamics simulation of formation of clathrate-hydrate precursors at planar water-methane interfaces: Insights into heterogeneous nucleation
journal, May 2014

  • English, Niall J.; Lauricella, Marco; Meloni, Simone
  • The Journal of Chemical Physics, Vol. 140, Issue 20
  • DOI: 10.1063/1.4879777

Fokker–Planck equations for nucleation processes revisited
journal, October 1998

  • Reguera, David; Rubı́, J. M.; Pérez-Madrid, A.
  • Physica A: Statistical Mechanics and its Applications, Vol. 259, Issue 1-2
  • DOI: 10.1016/S0378-4371(98)00259-3

Two-component order parameter for quantifying clathrate hydrate nucleation and growth
journal, April 2014

  • Barnes, Brian C.; Beckham, Gregg T.; Wu, David T.
  • The Journal of Chemical Physics, Vol. 140, Issue 16
  • DOI: 10.1063/1.4871898

Computer simulation of fluid phase change: vapor nucleation and bubble formation dynamics
journal, February 1999


Improving the specificity of organophosphorus hydrolase to acephate by mutagenesis at its binding site: a computational study
journal, May 2021

  • Badakhshan, Reza; Mohammadi, Mozafar; Farnoosh, Gholamreza
  • Journal of Molecular Modeling, Vol. 27, Issue 6
  • DOI: 10.1007/s00894-021-04749-6

Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries
journal, May 2021


Spontaneous drying of non-polar deep-cavity cavitand pockets in aqueous solution
journal, May 2020

  • Barnett, J. Wesley; Sullivan, Matthew R.; Long, Joshua A.
  • Nature Chemistry, Vol. 12, Issue 7
  • DOI: 10.1038/s41557-020-0458-8

Works referencing / citing this record:

Overcoming time scale and finite size limitations to compute nucleation rates from small scale well tempered metadynamics simulations
journal, December 2016

  • Salvalaglio, Matteo; Tiwary, Pratyush; Maggioni, Giovanni Maria
  • The Journal of Chemical Physics, Vol. 145, Issue 21
  • DOI: 10.1063/1.4966265

Ordering in clusters of uniaxial anisotropic particles during homogeneous nucleation and growth
journal, February 2019

  • Nozawa, Takuma; Brumby, Paul E.; Ayuba, Sho
  • The Journal of Chemical Physics, Vol. 150, Issue 5
  • DOI: 10.1063/1.5064410

Xenon recovery from natural gas by multiple gas hydrate crystallization: a theory and simulation
journal, February 2019


Xenon recovery from natural gas by multiple gas hydrate crystallization: a theory and simulation
text, January 2019