DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Are X-rays the key to integrated computational materials engineering?

Abstract

The ultimate dream of materials science is to predict materials behavior from composition and processing history. Owing to the growing power of computers, this long-time dream has recently found expression through worldwide excitement in a number of computation-based thrusts: integrated computational materials engineering, materials by design, computational materials design, three-dimensional materials physics and mesoscale physics. However, real materials have important crystallographic structures at multiple length scales, which evolve during processing and in service. Moreover, real materials properties can depend on the extreme tails in their structural and chemical distributions. This makes it critical to map structural distributions with sufficient resolution to resolve small structures and with sufficient statistics to capture the tails of distributions. For two-dimensional materials, there are high-resolution nondestructive probes of surface and near-surface structures with atomic or near-atomic resolution that can provide detailed structural, chemical and functional distributions over important length scales. Furthermore, there are no nondestructive three-dimensional probes with atomic resolution over the multiple length scales needed to understand most materials.

Authors:
 [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1241471
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
IUCrJ
Additional Journal Information:
Journal Volume: 2; Journal Issue: 6; Journal ID: ISSN 2052-2525
Publisher:
International Union of Crystallography
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; integrated computational materials engineering; nondestructive crystal structure mapping; stress tensor measurement

Citation Formats

Ice, Gene E. Are X-rays the key to integrated computational materials engineering?. United States: N. p., 2015. Web. doi:10.1107/S205225251501951X.
Ice, Gene E. Are X-rays the key to integrated computational materials engineering?. United States. https://doi.org/10.1107/S205225251501951X
Ice, Gene E. Sun . "Are X-rays the key to integrated computational materials engineering?". United States. https://doi.org/10.1107/S205225251501951X. https://www.osti.gov/servlets/purl/1241471.
@article{osti_1241471,
title = {Are X-rays the key to integrated computational materials engineering?},
author = {Ice, Gene E.},
abstractNote = {The ultimate dream of materials science is to predict materials behavior from composition and processing history. Owing to the growing power of computers, this long-time dream has recently found expression through worldwide excitement in a number of computation-based thrusts: integrated computational materials engineering, materials by design, computational materials design, three-dimensional materials physics and mesoscale physics. However, real materials have important crystallographic structures at multiple length scales, which evolve during processing and in service. Moreover, real materials properties can depend on the extreme tails in their structural and chemical distributions. This makes it critical to map structural distributions with sufficient resolution to resolve small structures and with sufficient statistics to capture the tails of distributions. For two-dimensional materials, there are high-resolution nondestructive probes of surface and near-surface structures with atomic or near-atomic resolution that can provide detailed structural, chemical and functional distributions over important length scales. Furthermore, there are no nondestructive three-dimensional probes with atomic resolution over the multiple length scales needed to understand most materials.},
doi = {10.1107/S205225251501951X},
journal = {IUCrJ},
number = 6,
volume = 2,
place = {United States},
year = {Sun Nov 01 00:00:00 EDT 2015},
month = {Sun Nov 01 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share: