DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural Flexibility and Alloying in Ultrathin Transition-Metal Chalcogenide Nanowires

Abstract

Metallic transition-metal chalcogenide (TMC) nanowires are an important building block for 2D electronics that may be fabricated within semiconducting transition-metal dichalcogenide (TMDC) monolayers. Tuning the geometric structure and electronic properties of such nanowires is a promising way to pattern diverse functional channels for wiring multiple units inside a 2D electronic circuit. However, few experimental investigations have been reported exploring the structural and compositional tunability of these nanowires, due to difficulties in manipulating the structure and chemical composition of an individual nanowire. Here, using a combination of scanning transmission electron microscopy (STEM) and density functional theory (DFT), we report that TMC nanowires have substantial intrinsic structural flexibility and their chemical composition can be manipulated. Rotational twisting, axial kinking, and branching of an individual nanowire is consistently observed and junctions with well-ordered atomic structures can be fabricated. We also show that the density of states of these nanowires can be finely tuned via alloying either the chalcogen or the transition-metal elements, where the chalcogen alloying can be further controlled by the acceleration voltage of the electron beam during the fabrication. The results open up the possibility of tailoring the properties of TMC nanowires, paving the way for robust ultrasmall interconnects in TMDC-basedmore » 2D flexible nanoelectronics.« less

Authors:
 [1];  [2];  [3];  [2]
  1. Vanderbilt Univ., Nashville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan)
  2. Vanderbilt Univ., Nashville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS); Vanderbilt Univ., Nashville, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1240570
Alternate Identifier(s):
OSTI ID: 1597738
Grant/Contract Number:  
AC05-00OR22725; FG02- 09ER46554; AC02-05CH11231; FG02-09ER46554
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 10; Journal Issue: 2; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; metallic nanowire; alloying; transition metal dichalcogenide; structural flexibility; junctions; chemical constituent manipulation

Citation Formats

Lin, Junhao, Zhang, Yuyang, Zhou, Wu, and Pantelides, Sokrates T. Structural Flexibility and Alloying in Ultrathin Transition-Metal Chalcogenide Nanowires. United States: N. p., 2016. Web. doi:10.1021/acsnano.5b07888.
Lin, Junhao, Zhang, Yuyang, Zhou, Wu, & Pantelides, Sokrates T. Structural Flexibility and Alloying in Ultrathin Transition-Metal Chalcogenide Nanowires. United States. https://doi.org/10.1021/acsnano.5b07888
Lin, Junhao, Zhang, Yuyang, Zhou, Wu, and Pantelides, Sokrates T. Mon . "Structural Flexibility and Alloying in Ultrathin Transition-Metal Chalcogenide Nanowires". United States. https://doi.org/10.1021/acsnano.5b07888. https://www.osti.gov/servlets/purl/1240570.
@article{osti_1240570,
title = {Structural Flexibility and Alloying in Ultrathin Transition-Metal Chalcogenide Nanowires},
author = {Lin, Junhao and Zhang, Yuyang and Zhou, Wu and Pantelides, Sokrates T.},
abstractNote = {Metallic transition-metal chalcogenide (TMC) nanowires are an important building block for 2D electronics that may be fabricated within semiconducting transition-metal dichalcogenide (TMDC) monolayers. Tuning the geometric structure and electronic properties of such nanowires is a promising way to pattern diverse functional channels for wiring multiple units inside a 2D electronic circuit. However, few experimental investigations have been reported exploring the structural and compositional tunability of these nanowires, due to difficulties in manipulating the structure and chemical composition of an individual nanowire. Here, using a combination of scanning transmission electron microscopy (STEM) and density functional theory (DFT), we report that TMC nanowires have substantial intrinsic structural flexibility and their chemical composition can be manipulated. Rotational twisting, axial kinking, and branching of an individual nanowire is consistently observed and junctions with well-ordered atomic structures can be fabricated. We also show that the density of states of these nanowires can be finely tuned via alloying either the chalcogen or the transition-metal elements, where the chalcogen alloying can be further controlled by the acceleration voltage of the electron beam during the fabrication. The results open up the possibility of tailoring the properties of TMC nanowires, paving the way for robust ultrasmall interconnects in TMDC-based 2D flexible nanoelectronics.},
doi = {10.1021/acsnano.5b07888},
journal = {ACS Nano},
number = 2,
volume = 10,
place = {United States},
year = {Mon Jan 18 00:00:00 EST 2016},
month = {Mon Jan 18 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 42 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The smallest carbon nanotube
journal, November 2000

  • Qin, Lu-Chang; Zhao, Xinluo; Hirahara, Kaori
  • Nature, Vol. 408, Issue 6808
  • DOI: 10.1038/35040699

Electromechanical Switch Based on Mo 6 S 6 Nanowires
journal, October 2008

  • Popov, Igor; Gemming, Sibylle; Okano, Shinya
  • Nano Letters, Vol. 8, Issue 12
  • DOI: 10.1021/nl801456f

Formation and manipulation of a metallic wire of single gold atoms
journal, October 1998

  • Yanson, A. I.; Bollinger, G. Rubio; van den Brom, H. E.
  • Nature, Vol. 395, Issue 6704
  • DOI: 10.1038/27405

Quantized conductance through individual rows of suspended gold atoms
journal, October 1998

  • Ohnishi, Hideaki; Kondo, Yukihito; Takayanagi, Kunio
  • Nature, Vol. 395, Issue 6704
  • DOI: 10.1038/27399

From graphene constrictions to single carbon chains
journal, August 2009


Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes
journal, September 2014

  • Senga, Ryosuke; Komsa, Hannu-Pekka; Liu, Zheng
  • Nature Materials, Vol. 13, Issue 11
  • DOI: 10.1038/nmat4069

Metallic when narrow
journal, June 2014


Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers
journal, April 2014


Experimental Observation of Boron Nitride Chains
journal, October 2014

  • Cretu, Ovidiu; Komsa, Hannu-Pekka; Lehtinen, Ossi
  • ACS Nano, Vol. 8, Issue 12
  • DOI: 10.1021/nn5046147

Atomic-Scale Structure of Mo 6 S 6 Nanowires
journal, November 2008

  • Kibsgaard, Jakob; Tuxen, Anders; Levisen, Martin
  • Nano Letters, Vol. 8, Issue 11
  • DOI: 10.1021/nl802384n

Assembling Nanowires from Mo−S Clusters and Effects of Iodine Doping on Electronic Structure
journal, August 2007

  • Murugan, P.; Kumar, Vijay; Kawazoe, Yoshiyuki
  • Nano Letters, Vol. 7, Issue 8
  • DOI: 10.1021/nl0706547

Atomic and electronic structure of Mo 6 S 9− x I x nanowires
journal, July 2005


Conductivity of single Mo 6 S 9− x I x molecular nanowire bundles
journal, September 2006


Integrated Circuits Based on Bilayer MoS2 Transistors
journal, January 2012

  • Wang, Han; Yu, Lili; Lee, Yi-Hsien
  • Nano Letters, Vol. 12, Issue 9, p. 4674-4680
  • DOI: 10.1021/nl302015v

Single-layer MoS2 transistors
journal, January 2011

  • Radisavljevic, B.; Radenovic, A.; Brivio, J.
  • Nature Nanotechnology, Vol. 6, Issue 3, p. 147-150
  • DOI: 10.1038/nnano.2010.279

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
journal, November 2012

  • Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras
  • Nature Nanotechnology, Vol. 7, Issue 11, p. 699-712
  • DOI: 10.1038/nnano.2012.193

Molybdenum Selenide Molecular Wires as One-Dimensional Conductors
journal, December 1999


Electron Transport in a Multichannel One-Dimensional Conductor: Molybdenum Selenide Nanowires
journal, February 2006


Growth of aligned Mo6S6 nanowires on Cu(111)
journal, May 2013


Air-stable monodispersed Mo 6 S 3 I 6 nanowires
journal, March 2004


Top–down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets
journal, April 2013

  • Liu, Xiaofei; Xu, Tao; Wu, Xing
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2803

Atomic Scale Microstructure and Properties of Se-Deficient Two-Dimensional MoSe 2
journal, February 2015


Tunable Band Gap Photoluminescence from Atomically Thin Transition-Metal Dichalcogenide Alloys
journal, April 2013

  • Chen, Yanfeng; Xi, Jinyang; Dumcenco, Dumitru O.
  • ACS Nano, Vol. 7, Issue 5, p. 4610-4616
  • DOI: 10.1021/nn401420h

Band Gap Engineering and Layer-by-Layer Mapping of Selenium-Doped Molybdenum Disulfide
journal, December 2013

  • Gong, Yongji; Liu, Zheng; Lupini, Andrew R.
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl4032296

Van der Waals heterostructures
journal, July 2013

  • Geim, A. K.; Grigorieva, I. V.
  • Nature, Vol. 499, Issue 7459, p. 419-425
  • DOI: 10.1038/nature12385

Vertical and in-plane heterostructures from WS2/MoS2 monolayers
journal, September 2014

  • Gong, Yongji; Lin, Junhao; Wang, Xingli
  • Nature Materials, Vol. 13, Issue 12, p. 1135-1142
  • DOI: 10.1038/nmat4091

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Projector augmented-wave method
journal, December 1994


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Works referencing / citing this record:

Atom-by-atom fabrication with electron beams
journal, June 2019

  • Dyck, Ondrej; Ziatdinov, Maxim; Lingerfelt, David B.
  • Nature Reviews Materials, Vol. 4, Issue 7
  • DOI: 10.1038/s41578-019-0118-z

Defect Engineering in 2D Materials: Precise Manipulation and Improved Functionalities
journal, December 2019


Optoelectronic and photonic devices based on transition metal dichalcogenides
journal, January 2020


Precisely monitoring and tailoring 2D nanostructures at the atomic scale
journal, May 2019

  • Xu, Tao; Shen, Yuting; Yin, Kuibo
  • APL Materials, Vol. 7, Issue 5
  • DOI: 10.1063/1.5096584

In Situ N‐Doped Graphene and Mo Nanoribbon Formation from Mo 2 Ti 2 C 3 MXene Monolayers
journal, January 2020


Atom-by-Atom Fabrication of Monolayer Molybdenum Membranes
journal, April 2018


The Atomic Circus: Small Electron Beams Spotlight Advanced Materials Down to the Atomic Scale
journal, October 2018