skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Clostridium thermocellum DSM 1313 transcriptional responses to redox perturbation

Abstract

Clostridium thermocellum is a promising consolidated bioprocessing candidate organism capable of directly converting lignocellulosic biomass to ethanol. Current ethanol yields, productivities, and growth inhibitions are industrial deployment impediments for commodity fuel production by this bacterium. Redox imbalance under certain conditions and in engineered strains may contribute to incomplete substrate utilization and may direct fermentation products to undesirable overflow metabolites. As a result, towards a better understanding of redox metabolism in C. thermocellum, we established continuous growth conditions and analyzed global gene expression during addition of two stress chemicals (methyl viologen and hydrogen peroxide) which changed the fermentation redox potential.

Authors:
 [1];  [2];  [2];  [2];  [1];  [1];  [2]
  1. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1238009
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Biotechnology for Biofuels
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 1754-6834
Publisher:
BioMed Central
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Clostridium thermocellum DSM 1313; microarray; transcriptomics; methyl viologen; chemostat; redox; sulfate; GS-GOGAT; hydrogenase

Citation Formats

Sander, Kyle B., Wilson, Charlotte M., Rodriquez, Jr., Miguel, Klingeman, Dawn Marie, Davison, Brian H., Brown, Steven D., and Rydzak, Thomas. Clostridium thermocellum DSM 1313 transcriptional responses to redox perturbation. United States: N. p., 2015. Web. doi:10.1186/s13068-015-0394-9.
Sander, Kyle B., Wilson, Charlotte M., Rodriquez, Jr., Miguel, Klingeman, Dawn Marie, Davison, Brian H., Brown, Steven D., & Rydzak, Thomas. Clostridium thermocellum DSM 1313 transcriptional responses to redox perturbation. United States. doi:10.1186/s13068-015-0394-9.
Sander, Kyle B., Wilson, Charlotte M., Rodriquez, Jr., Miguel, Klingeman, Dawn Marie, Davison, Brian H., Brown, Steven D., and Rydzak, Thomas. Sat . "Clostridium thermocellum DSM 1313 transcriptional responses to redox perturbation". United States. doi:10.1186/s13068-015-0394-9. https://www.osti.gov/servlets/purl/1238009.
@article{osti_1238009,
title = {Clostridium thermocellum DSM 1313 transcriptional responses to redox perturbation},
author = {Sander, Kyle B. and Wilson, Charlotte M. and Rodriquez, Jr., Miguel and Klingeman, Dawn Marie and Davison, Brian H. and Brown, Steven D. and Rydzak, Thomas},
abstractNote = {Clostridium thermocellum is a promising consolidated bioprocessing candidate organism capable of directly converting lignocellulosic biomass to ethanol. Current ethanol yields, productivities, and growth inhibitions are industrial deployment impediments for commodity fuel production by this bacterium. Redox imbalance under certain conditions and in engineered strains may contribute to incomplete substrate utilization and may direct fermentation products to undesirable overflow metabolites. As a result, towards a better understanding of redox metabolism in C. thermocellum, we established continuous growth conditions and analyzed global gene expression during addition of two stress chemicals (methyl viologen and hydrogen peroxide) which changed the fermentation redox potential.},
doi = {10.1186/s13068-015-0394-9},
journal = {Biotechnology for Biofuels},
number = 1,
volume = 8,
place = {United States},
year = {2015},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Unravelling Carbon Metabolism in Anaerobic Cellulolytic Bacteria
journal, January 2006


Global Transcriptome Analysis of Shewanella oneidensis MR-1 Exposed to Different Terminal Electron Acceptors
journal, September 2005


Kinetics of methyl viologen reduction by hydrogen catalyzed by hydrogenase from Desulfovibrio vulgaris
journal, January 1981


Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress
journal, January 2012


Inorganic nitrogen metabolism in two cellulose-degrading clostridia
journal, July 1986

  • Bogdahn, Michael; Kleiner, Diethelm
  • Archives of Microbiology, Vol. 145, Issue 2
  • DOI: 10.1007/BF00446774

Genetic basis for nitrate resistance in Desulfovibrio strains
journal, April 2014

  • Korte, Hannah L.; Fels, Samuel R.; Christensen, Geoff A.
  • Frontiers in Microbiology, Vol. 5
  • DOI: 10.3389/fmicb.2014.00153

Ammonia Assimilation in Rumen Bacteria: A Review
journal, April 2013


Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways
journal, May 2013

  • van der Veen, Douwe; Lo, Jonathan; Brown, Steven D.
  • Journal of Industrial Microbiology & Biotechnology, Vol. 40, Issue 7
  • DOI: 10.1007/s10295-013-1275-5

Formation and characterization of non-growth states in Clostridium thermocellum: spores and L-forms
journal, January 2012

  • Mearls, Elizabeth B.; Izquierdo, Javier A.; Lynd, Lee R.
  • BMC Microbiology, Vol. 12, Issue 1
  • DOI: 10.1186/1471-2180-12-180

Consolidated bioprocessing of cellulosic biomass: an update
journal, October 2005

  • Lynd, Lee R.; van Zyl, Willem H.; McBride, John E.
  • Current Opinion in Biotechnology, Vol. 16, Issue 5, p. 577-583
  • DOI: 10.1016/j.copbio.2005.08.009

Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology
journal, December 2009

  • Karp, P. D.; Paley, S. M.; Krummenacker, M.
  • Briefings in Bioinformatics, Vol. 11, Issue 1
  • DOI: 10.1093/bib/bbp043

The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides
journal, July 1999


Thermophilic lignocellulose deconstruction
journal, May 2014

  • Blumer-Schuette, Sara E.; Brown, Steven D.; Sander, Kyle B.
  • FEMS Microbiology Reviews, Vol. 38, Issue 3
  • DOI: 10.1111/1574-6976.12044

Preparation and characterization of a soluble nitrate reductase from Azotobacter chroococcum
journal, January 1973

  • Guerrero, M. G.; Vega, J. Ma; Leadbetter, E.
  • Archiv f�r Mikrobiologie, Vol. 91, Issue 4
  • DOI: 10.1007/BF00425049

Transcriptional Regulation of Central Carbon and Energy Metabolism in Bacteria by Redox-Responsive Repressor Rex
journal, December 2011

  • Ravcheev, D. A.; Li, X.; Latif, H.
  • Journal of Bacteriology, Vol. 194, Issue 5
  • DOI: 10.1128/JB.06412-11

Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum
journal, January 2013


Nitrogenase of Klebsiella pneumoniae: interaction with viologen dyes as measured by acetylene reduction
journal, November 1972


Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media
journal, February 2013


High Ethanol Titers from Cellulose by Using Metabolically Engineered Thermophilic, Anaerobic Microbes
journal, September 2011

  • Argyros, D. Aaron; Tripathi, Shital A.; Barrett, Trisha F.
  • Applied and Environmental Microbiology, Vol. 77, Issue 23, p. 8288-8294
  • DOI: 10.1128/AEM.00646-11

Development of pyrF-Based Genetic System for Targeted Gene Deletion in Clostridium thermocellum and Creation of a pta Mutant
journal, August 2010

  • Tripathi, S. A.; Olson, D. G.; Argyros, D. A.
  • Applied and Environmental Microbiology, Vol. 76, Issue 19, p. 6591-6599
  • DOI: 10.1128/AEM.01484-10

Consolidated bioprocessing of transgenic switchgrass by an engineered and evolved Clostridium thermocellum strain
journal, January 2014

  • Yee, Kelsey L.; Rodriguez Jr, Miguel; Thompson, Olivia A.
  • Biotechnology for Biofuels, Vol. 7, Issue 1
  • DOI: 10.1186/1754-6834-7-75

The role of AmtB, GlnK and glutamine synthetase in regulation of of transcription factor TnrA in Bacillus subtilis
journal, May 2013


Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa.
journal, March 1995


Differential expression of a Clostridium acetobutylicum antisense RNA: implications for regulation of glutamine synthetase.
journal, December 1992


Insights into electron flux through manipulation of fermentation conditions and assessment of protein expression profiles in Clostridium thermocellum
journal, May 2014

  • Rydzak, Thomas; Grigoryan, Marina; Cunningham, Zack J.
  • Applied Microbiology and Biotechnology, Vol. 98, Issue 14
  • DOI: 10.1007/s00253-014-5798-0

End-product induced metabolic shifts in Clostridium thermocellum ATCC 27405
journal, August 2011

  • Rydzak, Thomas; Levin, David B.; Cicek, Nazim
  • Applied Microbiology and Biotechnology, Vol. 92, Issue 1
  • DOI: 10.1007/s00253-011-3511-0

Structural studies of iron-sulfur proteins
journal, December 1970


Reassessment of the Transhydrogenase/Malate Shunt Pathway in Clostridium thermocellum ATCC 27405 through Kinetic Characterization of Malic Enzyme and Malate Dehydrogenase
journal, January 2015

  • Taillefer, M.; Rydzak, T.; Levin, D. B.
  • Applied and Environmental Microbiology, Vol. 81, Issue 7
  • DOI: 10.1128/AEM.03360-14

Growth phase-dependant enzyme profile of pyruvate catabolism and end-product formation in Clostridium thermocellum ATCC 27405
journal, March 2009


The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum
journal, May 2012


Alcohol production by Clostridium acetobutylicum induced by methyl viologen
journal, December 1986

  • Rao, Govind; Mutharasan, R.
  • Biotechnology Letters, Vol. 8, Issue 12
  • DOI: 10.1007/BF01078655

Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum
journal, January 2015

  • Biswas, Ranjita; Zheng, Tianyong; Olson, Daniel G.
  • Biotechnology for Biofuels, Vol. 8, Issue 1
  • DOI: 10.1186/s13068-015-0204-4

Roles of Thiol-Redox Pathways in Bacteria
journal, October 2001


Global transcriptional changes of Clostridium acetobutylicum cultures with increased butanol:acetone ratios
journal, May 2012


The kinetics of methyl viologen oxidation and reduction by the hydrogenase from Clostridium pasteurianium
journal, July 1978


Regulation of Uptake Hydrogenase and Effects of Hydrogen Utilization on Gene Expression in Rhodopseudomonas palustris
journal, August 2006

  • Rey, F. E.; Oda, Y.; Harwood, C. S.
  • Journal of Bacteriology, Vol. 188, Issue 17
  • DOI: 10.1128/JB.00381-06

Pyruvate catabolism and hydrogen synthesis pathway genes of Clostridium thermocellum ATCC 27405
journal, June 2008

  • Carere, Carlo R.; Kalia, Vipin; Sparling, Richard
  • Indian Journal of Microbiology, Vol. 48, Issue 2
  • DOI: 10.1007/s12088-008-0036-z

Clostridium thermocellum transcriptomic profiles after exposure to furfural or heat stress
journal, January 2013

  • Wilson, Charlotte M.; Yang, Shihui; Rodriguez, Miguel
  • Biotechnology for Biofuels, Vol. 6, Issue 1
  • DOI: 10.1186/1754-6834-6-131

The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa
journal, September 2006


Rex (Encoded by DVU_0916) in Desulfovibrio vulgaris Hildenborough Is a Repressor of Sulfate Adenylyl Transferase and Is Regulated by NADH
journal, October 2014

  • Christensen, G. A.; Zane, G. M.; Kazakov, A. E.
  • Journal of Bacteriology, Vol. 197, Issue 1
  • DOI: 10.1128/JB.02083-14

Influence of iron, phosphate and methyl viologen on glycerol fermentation of Clostridium butyricum
journal, March 1996

  • Reimann, A.; Biebl, H.; Deckwer, W. -D.
  • Applied Microbiology and Biotechnology, Vol. 45, Issue 1-2
  • DOI: 10.1007/s002530050647

Global transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrass
journal, January 2013

  • Wilson, Charlotte M.; Rodriguez, Miguel; Johnson, Courtney M.
  • Biotechnology for Biofuels, Vol. 6, Issue 1
  • DOI: 10.1186/1754-6834-6-179

The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading
journal, October 2014

  • Holwerda, Evert K.; Thorne, Philip G.; Olson, Daniel G.
  • Biotechnology for Biofuels, Vol. 7, Issue 1
  • DOI: 10.1186/s13068-014-0155-1

Metabolic control of Clostridium thermocellum via inhibition of hydrogenase activity and the glucose transport rate
journal, January 2012

  • Li, Hsin-Fen; Knutson, Barbara L.; Nokes, Sue E.
  • Applied Microbiology and Biotechnology, Vol. 93, Issue 4
  • DOI: 10.1007/s00253-011-3812-3