DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of three-dimensional nanoparticle branching on the Young’s modulus of nanocomposites: Effect of interface orientation

Abstract

Significance Currently, the effect of branching of nanoparticles tens of nanometers in size on the mechanical properties of structural composites is not well understood due to the limited availability of branched nanoscale fillers. We report that branched nanofillers have the potential for optimization of nanocomposite Young’s modulus over their linear counterparts. Lattice spring model simulations reveal that the mechanism for this improvement involves the ability of branched nanoparticles to optimize the ratio of both filler and stiff interfacial bonds aligned with the tensile axis, as opposed to linear nanoparticles, which optimize only the filler bond orientation when parallel to the stretching axis. We believe this information could inform the design of nanocomposites with optimized mechanical properties for a variety of structural applications.

Authors:
 [1];  [2];  [3];  [1];  [3];  [4];  [5];  [6];  [7]
  1. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,, Departments of bMaterials Science and Engineering,
  2. Chemistry,
  3. Chemical Engineering, and
  4. Mechanical Engineering, University of California, Berkeley, CA 94720, and
  5. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,, Departments of bMaterials Science and Engineering,, Mechanical Engineering, University of California, Berkeley, CA 94720, and
  6. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,, Departments of bMaterials Science and Engineering,, Chemistry,
  7. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,, Departments of bMaterials Science and Engineering,, Chemical Engineering, and, Kavli Energy NanoScience Institute, Berkeley, CA 94720
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1235179
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 112 Journal Issue: 21; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English

Citation Formats

Raja, Shilpa N., Olson, Andrew C. K., Limaye, Aditya, Thorkelsson, Kari, Luong, Andrew, Lin, Liwei, Ritchie, Robert O., Xu, Ting, and Alivisatos, A. Paul. Influence of three-dimensional nanoparticle branching on the Young’s modulus of nanocomposites: Effect of interface orientation. United States: N. p., 2015. Web. doi:10.1073/pnas.1421644112.
Raja, Shilpa N., Olson, Andrew C. K., Limaye, Aditya, Thorkelsson, Kari, Luong, Andrew, Lin, Liwei, Ritchie, Robert O., Xu, Ting, & Alivisatos, A. Paul. Influence of three-dimensional nanoparticle branching on the Young’s modulus of nanocomposites: Effect of interface orientation. United States. https://doi.org/10.1073/pnas.1421644112
Raja, Shilpa N., Olson, Andrew C. K., Limaye, Aditya, Thorkelsson, Kari, Luong, Andrew, Lin, Liwei, Ritchie, Robert O., Xu, Ting, and Alivisatos, A. Paul. Wed . "Influence of three-dimensional nanoparticle branching on the Young’s modulus of nanocomposites: Effect of interface orientation". United States. https://doi.org/10.1073/pnas.1421644112.
@article{osti_1235179,
title = {Influence of three-dimensional nanoparticle branching on the Young’s modulus of nanocomposites: Effect of interface orientation},
author = {Raja, Shilpa N. and Olson, Andrew C. K. and Limaye, Aditya and Thorkelsson, Kari and Luong, Andrew and Lin, Liwei and Ritchie, Robert O. and Xu, Ting and Alivisatos, A. Paul},
abstractNote = {Significance Currently, the effect of branching of nanoparticles tens of nanometers in size on the mechanical properties of structural composites is not well understood due to the limited availability of branched nanoscale fillers. We report that branched nanofillers have the potential for optimization of nanocomposite Young’s modulus over their linear counterparts. Lattice spring model simulations reveal that the mechanism for this improvement involves the ability of branched nanoparticles to optimize the ratio of both filler and stiff interfacial bonds aligned with the tensile axis, as opposed to linear nanoparticles, which optimize only the filler bond orientation when parallel to the stretching axis. We believe this information could inform the design of nanocomposites with optimized mechanical properties for a variety of structural applications.},
doi = {10.1073/pnas.1421644112},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 21,
volume = 112,
place = {United States},
year = {Wed May 13 00:00:00 EDT 2015},
month = {Wed May 13 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1073/pnas.1421644112

Citation Metrics:
Cited by: 31 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Shape-Memory Polymers
journal, June 2002


Lattice models in micromechanics
journal, January 2002

  • Ostoja-Starzewski, Martin
  • Applied Mechanics Reviews, Vol. 55, Issue 1
  • DOI: 10.1115/1.1432990

Nanostructured Fibers via Electrospinning
journal, January 2001


Tetrapod Nanocrystals as Fluorescent Stress Probes of Electrospun Nanocomposites
journal, July 2013

  • Raja, Shilpa N.; Olson, Andrew C. K.; Thorkelsson, Kari
  • Nano Letters, Vol. 13, Issue 8
  • DOI: 10.1021/nl401999t

Structural and mechanical properties of polymer nanocomposites
journal, August 2006


Hydroxyapatite Needle-Shaped Particles/Poly( l -lactic acid) Electrospun Scaffolds with Perfect Particle-along-Nanofiber Orientation and Significantly Enhanced Mechanical Properties
journal, July 2011

  • Peng, Fei; Shaw, Montgomery T.; Olson, James R.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 32
  • DOI: 10.1021/jp201384q

Clay-Reinforced Epoxy Nanocomposites
journal, December 1994

  • Lan, Tie; Pinnavaia, Thomas J.
  • Chemistry of Materials, Vol. 6, Issue 12
  • DOI: 10.1021/cm00048a006

Controlled growth of tetrapod-branched inorganic nanocrystals
journal, May 2003

  • Manna, Liberato; Milliron, Delia J.; Meisel, Andreas
  • Nature Materials, Vol. 2, Issue 6, p. 382-385
  • DOI: 10.1038/nmat902

Device-Scale Perpendicular Alignment of Colloidal Nanorods
journal, January 2010

  • Baker, Jessy L.; Widmer-Cooper, Asaph; Toney, Michael F.
  • Nano Letters, Vol. 10, Issue 1
  • DOI: 10.1021/nl903187v

Predicting the self-assembled morphology and mechanical properties of mixtures of diblocks and rod-like nanoparticles
journal, January 2003


Langmuir−Blodgett Nanorod Assembly
journal, May 2001

  • Kim, Franklin; Kwan, Serena; Akana, Jennifer
  • Journal of the American Chemical Society, Vol. 123, Issue 18, p. 4360-4361
  • DOI: 10.1021/ja0059138

Functionalized graphene sheets for polymer nanocomposites
journal, May 2008

  • Ramanathan, T.; Abdala, A. A.; Stankovich, S.
  • Nature Nanotechnology, Vol. 3, Issue 6, p. 327-331
  • DOI: 10.1038/nnano.2008.96

Cubatic phase for tetrapods
journal, March 2004

  • Blaak, Ronald; Mulder, Bela M.; Frenkel, Daan
  • The Journal of Chemical Physics, Vol. 120, Issue 11
  • DOI: 10.1063/1.1649733

On the rule of mixtures for the hardness of particle reinforced composites
journal, September 2000


Seeded Growth of Highly Luminescent CdSe/CdS Nanoheterostructures with Rod and Tetrapod Morphologies
journal, October 2007

  • Talapin, Dmitri V.; Nelson, James H.; Shevchenko, Elena V.
  • Nano Letters, Vol. 7, Issue 10
  • DOI: 10.1021/nl072003g

Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites
journal, August 2006


Stimuli-Responsive and Mechanically-Switchable Electrospun Composites
journal, November 2012

  • Wanasekara, Nandula D.; Stone, David A.; Wnek, Gary E.
  • Macromolecules, Vol. 45, Issue 22
  • DOI: 10.1021/ma301896u

A lattice spring model of heterogeneous materials with plasticity
journal, October 2001

  • Buxton, Gavin A.; Care, Christopher M.; Cleaver, Douglas J.
  • Modelling and Simulation in Materials Science and Engineering, Vol. 9, Issue 6
  • DOI: 10.1088/0965-0393/9/6/302

Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures
journal, February 2006

  • Gupta, Suresh; Zhang, Qingling; Emrick, Todd
  • Nature Materials, Vol. 5, Issue 3
  • DOI: 10.1038/nmat1582

The effect of nanoparticle shape on polymer-nanocomposite rheology and tensile strength
journal, January 2007

  • Knauert, Scott T.; Douglas, Jack F.; Starr, Francis W.
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 45, Issue 14
  • DOI: 10.1002/polb.21176

Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties
journal, May 2010


Reaction Chemistry and Ligand Exchange at Cadmium−Selenide Nanocrystal Surfaces
journal, September 2008

  • Owen, Jonathan S.; Park, Jungwon; Trudeau, Paul-Emile
  • Journal of the American Chemical Society, Vol. 130, Issue 37
  • DOI: 10.1021/ja804414f

Strain-dependent dynamic mechanical properties of Kevlar to failure: Structural correlations and comparisons to other polymers
journal, March 2015


Mechanical properties of nylon 6-clay hybrid
journal, May 1993

  • Kojima, Yoshitsugu; Usuki, Arimitsu; Kawasumi, Masaya
  • Journal of Materials Research, Vol. 8, Issue 5
  • DOI: 10.1557/JMR.1993.1185

Simulating the morphology and mechanical properties of filled diblock copolymers
journal, March 2003


Predicting the Mechanical and Electrical Properties of Nanocomposites Formed from Polymer Blends and Nanorods
journal, April 2004


Structural Change Accompanied by Plastic-to-Rubber Transition of SBS Block Copolymers
journal, May 1978

  • Fujimura, M.; Hashimoto, T.; Kawai, H.
  • Rubber Chemistry and Technology, Vol. 51, Issue 2
  • DOI: 10.5254/1.3545830

Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons
journal, July 2009

  • Prasad, K. E.; Das, B.; Maitra, U.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 32
  • DOI: 10.1073/pnas.0905844106

Modeling of solvent evaporation from polymer jets in electrospinning
journal, May 2011

  • Wu, Xiang-Fa; Salkovskiy, Yury; Dzenis, Yuris A.
  • Applied Physics Letters, Vol. 98, Issue 22
  • DOI: 10.1063/1.3585148

Mechanical Properties of Face-Centered Cubic Supercrystals of Nanocrystals
journal, July 2010

  • Tam, Enrico; Podsiadlo, Paul; Shevchenko, Elena
  • Nano Letters, Vol. 10, Issue 7
  • DOI: 10.1021/nl1001313

Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites
journal, August 1999


Block Copolymer Nanocomposites: Perspectives for Tailored Functional Materials
journal, June 2005

  • Bockstaller, M. R.; Mickiewicz, R. A.; Thomas, E. L.
  • Advanced Materials, Vol. 17, Issue 11, p. 1331-1349
  • DOI: 10.1002/adma.200500167

Nanoparticle Polymer Composites: Where Two Small Worlds Meet
journal, November 2006

  • Balazs, A. C.; Emrick, T.; Russell, T. P.
  • Science, Vol. 314, Issue 5802, p. 1107-1110
  • DOI: 10.1126/science.1130557

Lattice spring model of filled polymers and nanocomposites
journal, October 2002

  • Buxton, Gavin A.; Balazs, Anna C.
  • The Journal of Chemical Physics, Vol. 117, Issue 16
  • DOI: 10.1063/1.1509447