skip to main content

DOE PAGESDOE PAGES

Title: Communication: X-ray coherent diffractive imaging by immersion in nanodroplets

Lensless x-ray microscopy requires the recovery of the phase of the radiation scattered from a specimen. Here, we demonstrate a de novo phase retrieval technique by encapsulating an object in a superfluid helium nanodroplet, which provides both a physical support and an approximate scattering phase for the iterative image reconstruction. The technique is robust, fast-converging, and yields the complex density of the immersed object. As a result, images of xenon clusters embedded in superfluid helium droplets reveal transient configurations of quantum vortices in this fragile system.
Authors:
 [1] ;  [1] ;  [1] ;  [2] ;  [3] ;  [4] ;  [5] ;  [3] ;  [6] ;  [7] ;  [4] ;  [5] ;  [8] ;  [1] ;  [9] ;  [2] ;  [10] ;  [4] ;  [11] ;  [6] more »;  [4] ;  [6] ;  [12] ;  [6] ;  [1] « less
  1. Univ. of Southern California, Los Angeles, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California Berkeley, Berkeley, CA (United States)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Max-Planck-Institut fur Kernphysik, Heidelberg (Germany); Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Hamburg (Germany)
  5. Max-Planck-Institut fur Kernphysik, Heidelberg (Germany); Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Hamburg (Germany); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  7. Max-Planck-Institut fur extraterrestrische Physik, Garching (Germany)
  8. Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Hamburg (Germany); Max-Planck-Institut fur Medizinische Forschung, Heidelberg (Germany)
  9. PNSensor GmbH, Munich (Germany)
  10. Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Hamburg (Germany); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Max-Planck-Institut fur Medizinische Forschung, Heidelberg (Germany); Kansas State Univ., Manhattan, KS (United States)
  11. Max-Planck-Institut fur Kernphysik, Heidelberg (Germany); Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Hamburg (Germany); Kansas State Univ., Manhattan, KS (United States)
  12. SLAC National Accelerator Lab., Menlo Park, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Northwestern Univ., Evanston, IL (United States)
Publication Date:
Grant/Contract Number:
AC03-76SF00515; AC02-05CH11231
Type:
Accepted Manuscript
Journal Name:
Structural Dynamics
Additional Journal Information:
Journal Volume: 2; Journal Issue: 5; Journal ID: ISSN 2329-7778
Publisher:
American Crystallographic Association/AIP
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; fluid drops; X-ray scattering; X-ray diffraction; image reconstruction; atom scattering
OSTI Identifier:
1230062
Alternate Identifier(s):
OSTI ID: 1407303

Tanyag, Rico Mayro P., Bernando, Charles, Jones, Curtis F., Bacellar, Camila, Ferguson, Ken R., Anielski, Denis, Boll, Rebecca, Carron, Sebastian, Cryan, James P., Englert, Lars, Epp, Sascha W., Erk, Benjamin, Foucar, Lutz, Gomez, Luis F., Hartmann, Robert, Neumark, Daniel M., Rolles, Daniel, Rudek, Benedikt, Rudenko, Artem, Siefermann, Katrin R., Ullrich, Joachim, Weise, Fabian, Bostedt, Christoph, Gessner, Oliver, and Vilesov, Andrey F.. Communication: X-ray coherent diffractive imaging by immersion in nanodroplets. United States: N. p., Web. doi:10.1063/1.4933297.
Tanyag, Rico Mayro P., Bernando, Charles, Jones, Curtis F., Bacellar, Camila, Ferguson, Ken R., Anielski, Denis, Boll, Rebecca, Carron, Sebastian, Cryan, James P., Englert, Lars, Epp, Sascha W., Erk, Benjamin, Foucar, Lutz, Gomez, Luis F., Hartmann, Robert, Neumark, Daniel M., Rolles, Daniel, Rudek, Benedikt, Rudenko, Artem, Siefermann, Katrin R., Ullrich, Joachim, Weise, Fabian, Bostedt, Christoph, Gessner, Oliver, & Vilesov, Andrey F.. Communication: X-ray coherent diffractive imaging by immersion in nanodroplets. United States. doi:10.1063/1.4933297.
Tanyag, Rico Mayro P., Bernando, Charles, Jones, Curtis F., Bacellar, Camila, Ferguson, Ken R., Anielski, Denis, Boll, Rebecca, Carron, Sebastian, Cryan, James P., Englert, Lars, Epp, Sascha W., Erk, Benjamin, Foucar, Lutz, Gomez, Luis F., Hartmann, Robert, Neumark, Daniel M., Rolles, Daniel, Rudek, Benedikt, Rudenko, Artem, Siefermann, Katrin R., Ullrich, Joachim, Weise, Fabian, Bostedt, Christoph, Gessner, Oliver, and Vilesov, Andrey F.. 2015. "Communication: X-ray coherent diffractive imaging by immersion in nanodroplets". United States. doi:10.1063/1.4933297. https://www.osti.gov/servlets/purl/1230062.
@article{osti_1230062,
title = {Communication: X-ray coherent diffractive imaging by immersion in nanodroplets},
author = {Tanyag, Rico Mayro P. and Bernando, Charles and Jones, Curtis F. and Bacellar, Camila and Ferguson, Ken R. and Anielski, Denis and Boll, Rebecca and Carron, Sebastian and Cryan, James P. and Englert, Lars and Epp, Sascha W. and Erk, Benjamin and Foucar, Lutz and Gomez, Luis F. and Hartmann, Robert and Neumark, Daniel M. and Rolles, Daniel and Rudek, Benedikt and Rudenko, Artem and Siefermann, Katrin R. and Ullrich, Joachim and Weise, Fabian and Bostedt, Christoph and Gessner, Oliver and Vilesov, Andrey F.},
abstractNote = {Lensless x-ray microscopy requires the recovery of the phase of the radiation scattered from a specimen. Here, we demonstrate a de novo phase retrieval technique by encapsulating an object in a superfluid helium nanodroplet, which provides both a physical support and an approximate scattering phase for the iterative image reconstruction. The technique is robust, fast-converging, and yields the complex density of the immersed object. As a result, images of xenon clusters embedded in superfluid helium droplets reveal transient configurations of quantum vortices in this fragile system.},
doi = {10.1063/1.4933297},
journal = {Structural Dynamics},
number = 5,
volume = 2,
place = {United States},
year = {2015},
month = {10}
}

Works referenced in this record:

X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92
journal, July 1993
  • Henke, B. L.; Gullikson, E. M.; Davis, J. C.
  • Atomic Data and Nuclear Data Tables, Vol. 54, Issue 2, p. 181-342
  • DOI: 10.1006/adnd.1993.1013