DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

Abstract

With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior tomore » annealing than obtained with a standard amorphous silicon layer.« less

Authors:
ORCiD logo [1];  [1]
  1. Arizona State Univ., Tempe, AZ (United States)
Publication Date:
Research Org.:
Arizona State Univ., Tempe, AZ (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1229744
Alternate Identifier(s):
OSTI ID: 1229615
Grant/Contract Number:  
EE0006335
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 118; Journal Issue: 6; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; passivation; carbon; carbides; amorphous semiconductors; band gap

Citation Formats

Boccard, Mathieu, and Holman, Zachary C. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells. United States: N. p., 2015. Web. doi:10.1063/1.4928203.
Boccard, Mathieu, & Holman, Zachary C. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells. United States. https://doi.org/10.1063/1.4928203
Boccard, Mathieu, and Holman, Zachary C. Fri . "Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells". United States. https://doi.org/10.1063/1.4928203. https://www.osti.gov/servlets/purl/1229744.
@article{osti_1229744,
title = {Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells},
author = {Boccard, Mathieu and Holman, Zachary C.},
abstractNote = {With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.},
doi = {10.1063/1.4928203},
journal = {Journal of Applied Physics},
number = 6,
volume = 118,
place = {United States},
year = {Fri Aug 14 00:00:00 EDT 2015},
month = {Fri Aug 14 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 52 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High-efficiency Silicon Heterojunction Solar Cells: A Review
journal, January 2012


24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer
journal, January 2014


Current Losses at the Front of Silicon Heterojunction Solar Cells
journal, January 2012


Silicon heterojunction solar cell with amorphous silicon oxide buffer and microcrystalline silicon oxide contact layers
journal, March 2012

  • Ding, Kaining; Aeberhard, Urs; Finger, Friedhelm
  • physica status solidi (RRL) - Rapid Research Letters, Vol. 6, Issue 5
  • DOI: 10.1002/pssr.201206030

Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells
journal, January 2014

  • Peter Seif, Johannes; Descoeudres, Antoine; Filipič, Miha
  • Journal of Applied Physics, Vol. 115, Issue 2
  • DOI: 10.1063/1.4861404

Silicon heterojunction solar cell with passivated hole selective MoO x contact
journal, March 2014

  • Battaglia, Corsin; de Nicolás, Silvia Martín; De Wolf, Stefaan
  • Applied Physics Letters, Vol. 104, Issue 11
  • DOI: 10.1063/1.4868880

Optimization of p-Type Hydrogenated Microcrystalline Silicon Oxide Window Layer for High-Efficiency Crystalline Silicon Heterojunction Solar Cells
journal, October 2009

  • Sritharathikhun, Jaran; Jiang, Fangdan; Miyajima, Shinsuke
  • Japanese Journal of Applied Physics, Vol. 48, Issue 10
  • DOI: 10.1143/JJAP.48.101603

Interdigitated back contact silicon heterojunction solar cell and the effect of front surface passivation
journal, August 2007

  • Lu, Meijun; Bowden, Stuart; Das, Ujjwal
  • Applied Physics Letters, Vol. 91, Issue 6
  • DOI: 10.1063/1.2768635

Solar cell efficiency tables (Version 45): Solar cell efficiency tables
journal, December 2014

  • Green, Martin A.; Emery, Keith; Hishikawa, Yoshihiro
  • Progress in Photovoltaics: Research and Applications, Vol. 23, Issue 1
  • DOI: 10.1002/pip.2573

Comparison of p-n junction and inversion-layer silicon solar cells by means of experiment and simulation
journal, May 1996


Low-temperature processed meso-superstructured to thin-film perovskite solar cells
journal, January 2013

  • Ball, James M.; Lee, Michael M.; Hey, Andrew
  • Energy & Environmental Science, Vol. 6, Issue 6
  • DOI: 10.1039/c3ee40810h

Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency
journal, May 2014

  • Qin, Peng; Tanaka, Soichiro; Ito, Seigo
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4834

Photoelectrochemical Behavior of Planar and Microwire-Array Si|GaP Electrodes
journal, June 2012

  • Strandwitz, Nicholas C.; Turner-Evans, Daniel B.; Tamboli, Adele C.
  • Advanced Energy Materials, Vol. 2, Issue 9
  • DOI: 10.1002/aenm.201100728

Nature of doped a-Si:H/c-Si interface recombination
journal, May 2009

  • De Wolf, Stefaan; Kondo, Michio
  • Journal of Applied Physics, Vol. 105, Issue 10
  • DOI: 10.1063/1.3129578

Composition and Thermal Stability of Glow-Discharge a-Si:C:H and a-Si:N:H Alloys
book, January 1987


Thin-Film Silicon Solar Cells
book, January 2010


Crystalline silicon surface passivation with amorphous SiCx:H films deposited by plasma-enhanced chemical-vapor deposition
journal, December 2005

  • Martín, I.; Vetter, M.; Garín, M.
  • Journal of Applied Physics, Vol. 98, Issue 11
  • DOI: 10.1063/1.2140867

IR-study of a-SiCx:H and a-SiCxNy:H films for c-Si surface passivation
journal, March 2004


a-SiC:H passivation for crystalline silicon solar cells
journal, February 2010

  • Ehling, Christian; Werner, Jürgen H.; Schubert, Markus B.
  • physica status solidi (c)
  • DOI: 10.1002/pssc.200982849

Passivating Properties of Hydrogenated Amorphous Silicon Carbide Deposited by PECVD Technique for Photovoltaic Applications
journal, January 2013


Amorphous silicon carbide heterojunction solar cells on p-type substrates
journal, February 2011


>21% Efficient Silicon Heterojunction Solar Cells on n- and p-Type Wafers Compared
journal, January 2013


>750 mV open circuit voltage measured on 50 μ m thick silicon heterojunction solar cell
journal, July 2013

  • Herasimenka, Stanislau Y.; Dauksher, William J.; Bowden, Stuart G.
  • Applied Physics Letters, Vol. 103, Issue 5
  • DOI: 10.1063/1.4817723

n-type emitter surface passivation in c-Si solar cells by means of antireflective amorphous silicon carbide layers
journal, October 2006

  • Ferre, R.; Martín, I.; Ortega, P.
  • Journal of Applied Physics, Vol. 100, Issue 7
  • DOI: 10.1063/1.2354323

Phosphorus-doped SiC as an excellent p-type Si surface passivation layer
journal, March 2006

  • Janz, S.; Riepe, S.; Hofmann, M.
  • Applied Physics Letters, Vol. 88, Issue 13
  • DOI: 10.1063/1.2191954

Optical Enhancement of Silicon Heterojunction Solar Cells With Hydrogenated Amorphous Silicon Carbide Emitter
journal, November 2014

  • Zhang, Dong; Deligiannis, Dimitrios; Papakonstantinou, Georgios
  • IEEE Journal of Photovoltaics, Vol. 4, Issue 6
  • DOI: 10.1109/JPHOTOV.2014.2344768

Structural, optical and electronic properties of wide band gap amorphous carbon-silicon alloys
journal, April 1993


Conduction- and valence-band offsets at the hydrogenated amorphous silicon-carbon/crystalline silicon interface via capacitance techniques
journal, August 1996


Infrared absorption and hydrogen effusion of hydrogenated amorphous silicon-oxide films
journal, May 2000


Vacancies and voids in hydrogenated amorphous silicon
journal, March 2003

  • Smets, A. H. M.; Kessels, W. M. M.; van de Sanden, M. C. M.
  • Applied Physics Letters, Vol. 82, Issue 10
  • DOI: 10.1063/1.1559657

Impact of a-Si:H hydrogen depth profiles on passivation properties in a-Si:H/c-Si heterojunctions
journal, April 2012


Model for a-Si:H/c-Si interface recombination based on the amphoteric nature of silicon dangling bonds
journal, July 2007


A recombination model for a-Si:H/c-Si heterostructures
journal, January 2010


Electronic structure of amorphous silicon carbide compounds
journal, February 1990


Photoemission studies of amorphous semiconductor heterojunctions
journal, December 1985


Electronic states and band lineups in c-Si(100)/a- Si 1 x C x :H heterojunctions
journal, April 1997


The electronic structure of amorphous silicon–carbon alloys
journal, October 1999


The electronic and atomic structure of hydrogenated amorphous Si—C alloys
journal, November 1992


Electron transport of amorphous hydrogenated silicon-carbon alloy films prepared by glow discharge decomposition
journal, December 1991


The role of amorphous silicon and tunneling in heterojunction with intrinsic thin layer (HIT) solar cells
journal, May 2009

  • Kanevce, Ana; Metzger, Wyatt K.
  • Journal of Applied Physics, Vol. 105, Issue 9
  • DOI: 10.1063/1.3106642

Band discontinuities at heterojunctions between crystalline and amorphous silicon
journal, July 1995

  • Van de Walle, Chris G.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 13, Issue 4
  • DOI: 10.1116/1.587870

Doped Layer Optimization for Silicon Heterojunctions by Injection-Level-Dependent Open-Circuit Voltage Measurements
journal, March 2014


Amorphous Silicon Carbide/Crystalline Silicon Heterojunction Solar Cells: A Comprehensive Study of the Photocarrier Collection
journal, July 1998

  • Cleef, Maarten W. M. van; Rubinelli, Francisco A.; Rizzoli, Rita
  • Japanese Journal of Applied Physics, Vol. 37, Issue Part 1, No. 7A
  • DOI: 10.1143/JJAP.37.3926

Works referencing / citing this record:

Dielectric surface passivation for silicon solar cells: A review
journal, June 2017

  • Bonilla, Ruy S.; Hoex, Bram; Hamer, Phillip
  • physica status solidi (a), Vol. 214, Issue 7
  • DOI: 10.1002/pssa.201700293

Toward Annealing-Stable Molybdenum-Oxide-Based Hole-Selective Contacts For Silicon Photovoltaics
journal, February 2018


A passivating contact for silicon solar cells formed during a single firing thermal annealing
journal, September 2018


Passivating contacts for crystalline silicon solar cells
journal, September 2019


Synthesis and thermal reaction of stainless steel nanowires
journal, January 2020

  • Csiszár, Gábor; Schellenberger, Martin; Schmitz, Guido
  • Nanoscale, Vol. 12, Issue 2
  • DOI: 10.1039/c9nr06946a

Plasma-initiated rehydrogenation of amorphous silicon to increase the temperature processing window of silicon heterojunction solar cells
journal, July 2016

  • Shi, Jianwei; Boccard, Mathieu; Holman, Zachary
  • Applied Physics Letters, Vol. 109, Issue 3
  • DOI: 10.1063/1.4958831

Highly tunable electronic properties in plasma-synthesized B-doped microcrystalline-to-amorphous silicon nanostructure for solar cell applications
journal, October 2017

  • Lim, J. W. M.; Ong, J. G. D.; Guo, Y.
  • Journal of Applied Physics, Vol. 122, Issue 13
  • DOI: 10.1063/1.5002115