DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Detection and characterization of multi-filament evolution during resistive switching

Abstract

We present resistive switching data in TaOx memristors displaying signatures of multi-filament switching modes, and develop a geometrically defined equivalent circuit to separate the individual resistances and powers dissipated in each filament. Using these resolved values, we compare the individual switching curves of each filament and demonstrate that the switching data of each filament collapse onto a single switching curve determined by the analytical steady-state resistive switching solution for filamentary switching. Analyzing our results in terms of this solution, we determine the switching temperature, heat flow, conductivity, and time evolving areas of each filament during resistive switching. Finally, we discuss operational modes which may limit the formation of additional conducting filaments, potentially leading to increased device endurance.

Authors:
 [1];  [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1145719
Report Number(s):
SAND2014-4055J
Journal ID: ISSN 0003-6951; APPLAB; 518013
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 105; Journal Issue: 5; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Mickel, Patrick R., Lohn, Andrew J., and Marinella, Matthew J. Detection and characterization of multi-filament evolution during resistive switching. United States: N. p., 2014. Web. doi:10.1063/1.4892471.
Mickel, Patrick R., Lohn, Andrew J., & Marinella, Matthew J. Detection and characterization of multi-filament evolution during resistive switching. United States. https://doi.org/10.1063/1.4892471
Mickel, Patrick R., Lohn, Andrew J., and Marinella, Matthew J. Tue . "Detection and characterization of multi-filament evolution during resistive switching". United States. https://doi.org/10.1063/1.4892471. https://www.osti.gov/servlets/purl/1145719.
@article{osti_1145719,
title = {Detection and characterization of multi-filament evolution during resistive switching},
author = {Mickel, Patrick R. and Lohn, Andrew J. and Marinella, Matthew J.},
abstractNote = {We present resistive switching data in TaOx memristors displaying signatures of multi-filament switching modes, and develop a geometrically defined equivalent circuit to separate the individual resistances and powers dissipated in each filament. Using these resolved values, we compare the individual switching curves of each filament and demonstrate that the switching data of each filament collapse onto a single switching curve determined by the analytical steady-state resistive switching solution for filamentary switching. Analyzing our results in terms of this solution, we determine the switching temperature, heat flow, conductivity, and time evolving areas of each filament during resistive switching. Finally, we discuss operational modes which may limit the formation of additional conducting filaments, potentially leading to increased device endurance.},
doi = {10.1063/1.4892471},
journal = {Applied Physics Letters},
number = 5,
volume = 105,
place = {United States},
year = {Tue Aug 05 00:00:00 EDT 2014},
month = {Tue Aug 05 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges
journal, July 2009

  • Waser, Rainer; Dittmann, Regina; Staikov, Georgi
  • Advanced Materials, Vol. 21, Issue 25-26, p. 2632-2663
  • DOI: 10.1002/adma.200900375

Nanoionics-based resistive switching memories
journal, November 2007

  • Waser, Rainer; Aono, Masakazu
  • Nature Materials, Vol. 6, Issue 11, p. 833-840
  • DOI: 10.1038/nmat2023

Memristive switching: physical mechanisms and applications
journal, April 2014

  • Mickel, Patrick R.; Lohn, Andrew J.; Marinella, Matthew J.
  • Modern Physics Letters B, Vol. 28, Issue 10, Article No. 1430003
  • DOI: 10.1142/S0217984914300038

Atomic structure of conducting nanofilaments in TiO2 resistive switching memory
journal, January 2010

  • Kwon, Deok-Hwang; Kim, Kyung Min; Jang, Jae Hyuck
  • Nature Nanotechnology, Vol. 5, Issue 2
  • DOI: 10.1038/nnano.2009.456

Anatomy of a Nanoscale Conduction Channel Reveals the Mechanism of a High-Performance Memristor
journal, November 2011

  • Miao, Feng; Strachan, John Paul; Yang, J. Joshua
  • Advanced Materials, Vol. 23, Issue 47, p. 5633-5640
  • DOI: 10.1002/adma.201103379

Memristive devices for computing
journal, January 2013

  • Yang, J. Joshua; Strukov, Dmitri B.; Stewart, Duncan R.
  • Nature Nanotechnology, Vol. 8, Issue 1, p. 13-24
  • DOI: 10.1038/nnano.2012.240

‘Memristive’ switches enable ‘stateful’ logic operations via material implication
journal, April 2010

  • Borghetti, Julien; Snider, Gregory S.; Kuekes, Philip J.
  • Nature, Vol. 464, Issue 7290
  • DOI: 10.1038/nature08940

Nanometer-Scale ${\rm HfO}_{x}$ RRAM
journal, August 2013

  • Zhang, Zhiping; Wu, Yi; Wong, H. -S. Philip
  • IEEE Electron Device Letters, Vol. 34, Issue 8
  • DOI: 10.1109/LED.2013.2265404

Sub-nanosecond switching of a tantalum oxide memristor
journal, November 2011


Isothermal Switching and Detailed Filament Evolution in Memristive Systems
journal, April 2014

  • Mickel, Patrick R.; Lohn, Andrew J.; James, Conrad D.
  • Advanced Materials, Vol. 26, Issue 26, p. 4486-4490
  • DOI: 10.1002/adma.201306182

Scaling Effect on Unipolar and Bipolar Resistive Switching of Metal Oxides
journal, April 2013

  • Yanagida, Takeshi; Nagashima, Kazuki; Oka, Keisuke
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01657

A CMOS Compatible, Forming Free TaOx ReRAM
journal, August 2013

  • Lohn, A. J.; Stevens, J. E.; Mickel, P. R.
  • ECS Transactions, Vol. 58, Issue 5, p. 59-65
  • DOI: 10.1149/05805.0059ecst

Optimizing TaOx memristor performance and consistency within the reactive sputtering “forbidden region”
journal, August 2013

  • Lohn, Andrew J.; Stevens, James E.; Mickel, Patrick R.
  • Applied Physics Letters, Vol. 103, Issue 6, Article No. 063502
  • DOI: 10.1063/1.4817927

Reactive sputtering of substoichiometric Ta2Ox for resistive memory applications
journal, March 2014

  • Stevens, James E.; Lohn, Andrew J.; Decker, Seth A.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 32, Issue 2, Article No. 021501
  • DOI: 10.1116/1.4828701

Dynamics of percolative breakdown mechanism in tantalum oxide resistive switching
journal, October 2013

  • Lohn, Andrew J.; Mickel, Patrick R.; Marinella, Matthew J.
  • Applied Physics Letters, Vol. 103, Issue 17, Article No. 173503
  • DOI: 10.1063/1.4826277

A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures
journal, July 2011

  • Lee, Myoung-Jae; Lee, Chang Bum; Lee, Dongsoo
  • Nature Materials, Vol. 10, Issue 8, p. 625-630
  • DOI: 10.1038/nmat3070

High switching endurance in TaOx memristive devices
journal, December 2010

  • Yang, J. Joshua; Zhang, M. -X.; Strachan, John Paul
  • Applied Physics Letters, Vol. 97, Issue 23
  • DOI: 10.1063/1.3524521

Analytical estimations for thermal crosstalk, retention, and scaling limits in filamentary resistive memory
journal, June 2014

  • Lohn, Andrew J.; Mickel, Patrick R.; Marinella, Matthew J.
  • Journal of Applied Physics, Vol. 115, Issue 23, Article No. 234507
  • DOI: 10.1063/1.4885045

Works referencing / citing this record:

Electroforming-Free TaOx Memristors using Focused Ion Beam Irradiations
text, January 2017