DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MLP-NN vs Gauss-Newton files

Abstract

-Input files for randomly selected subset data (30 instances) from primary dipole-dipole forward modeling data.-Inversion results in surfer grid format as well as in .DAT format.-Scatterplots for MLP-NN vs Gauss-Newton present in the excel sheet.

Authors:

  1. New Mexico State Univ., Las Cruces, NM (United States); New Mexico State Univ., Las Cruces, NM (United States)
Publication Date:
DOE Contract Number:  
SC0023132
Research Org.:
New Mexico State University, Las Cruces, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
Subject:
58 GEOSCIENCES; Boosting; Electrical resistivity; Geophysics; Machine learning; Neural networks; Random forests
OSTI Identifier:
2520487
DOI:
https://doi.org/10.6084/m9.figshare.24328972.v1

Citation Formats

Jamil, Ahsan. MLP-NN vs Gauss-Newton files. United States: N. p., 2023. Web. doi:10.6084/m9.figshare.24328972.v1.
Jamil, Ahsan. MLP-NN vs Gauss-Newton files. United States. doi:https://doi.org/10.6084/m9.figshare.24328972.v1
Jamil, Ahsan. 2023. "MLP-NN vs Gauss-Newton files". United States. doi:https://doi.org/10.6084/m9.figshare.24328972.v1. https://www.osti.gov/servlets/purl/2520487. Pub date:Wed Oct 18 00:00:00 EDT 2023
@article{osti_2520487,
title = {MLP-NN vs Gauss-Newton files},
author = {Jamil, Ahsan},
abstractNote = {-Input files for randomly selected subset data (30 instances) from primary dipole-dipole forward modeling data.-Inversion results in surfer grid format as well as in .DAT format.-Scatterplots for MLP-NN vs Gauss-Newton present in the excel sheet.},
doi = {10.6084/m9.figshare.24328972.v1},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Oct 18 00:00:00 EDT 2023},
month = {Wed Oct 18 00:00:00 EDT 2023}
}